首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
北秦岭松树沟榴辉岩的确定及其地质意义   总被引:9,自引:8,他引:1  
陈丹玲  任云飞  宫相宽  刘良  高胜 《岩石学报》2015,31(7):1841-1854
松树沟石榴石角闪岩(榴闪岩)呈透镜状产于松树沟超镁铁岩旁侧的斜长角闪岩中,一直以来被认为是形成于接触交代变质或麻粒岩相变质过程。详细岩相学及矿物元素分析,在榴闪岩的基质矿物、石榴石幔部及锆石包体中发现残留的绿辉石,而且石榴石也保存了明显的进变质主、微量元素成分环带,表明松树沟榴闪岩为榴辉岩退变质的产物,至少经历了从角闪岩相到榴辉岩相再到角闪岩相的三阶段顺时针PT演化过程。锆石定年结果得到榴辉岩的变质年龄为500±8Ma,原岩结晶时代为796±16Ma,与秦岭岩群北侧官坡超高压榴辉岩的变质年龄和原岩年龄完全一致,也与北秦岭区域高压-超高压变质时代和原岩的结晶时代一致。表明松树沟榴辉岩与北秦岭造山带已发现的高压-超高压变质岩石一起都应是古生代大陆深俯冲作用的结果,而松树沟超镁铁岩可能是俯冲的大陆板片在折返过程中携带的俯冲隧道中的交代地幔岩。  相似文献   

2.
The metabasites of Chadegan, including eclogite, garnet amphibolite and amphibolite, are forming a part of Sanandaj–Sirjan Zone. These rocks have formed during the subduction of the Neo–Tethys ocean crust under Iranian plate. This subduction resulted in a subduction metamorphism under high pressuremedium temperature of eclogite and amphibolites facies condition. Then the metamorphic rocks were exhumed during the continental collision between the Afro–Arabian continent and the Iranian microcontinent. In the metabasite rocks, with typical MORB composition, garnet preserved a compositional zoning occurred during metamorphism. The magnesium (XMg) gradually increases from core to rim of garnets, while the manganese (XMn) decreases towards the rim. Chondrite–normalized Rare Earth Element patterns for these garnets exhibit core–to–rim increases in Light Rare Earth Elements. The chondrite–normalized REE patterns of garnets, amphiboles and pyroxenes display positive trend from LREEs to Heavy Rare Earth Elements (especially in garnet), which suggests the role of these minerals as the major controller of HREE distribution. The geochemical features show that the studied eclogite and associated rocks have a MORB origin, and probably formed in a deep–seated subduction channel environment. The geothermometry estimation yields average pressure of ~22 kbar and temperature of 470–520°C for eclogite fomation. The thermobarometry results gave T = 650–700°C and P ≈ 10–11 kbar for amphibolite facies.  相似文献   

3.
夏琼霞 《地球科学》2019,44(12):4042-4049
石榴石是高压-超高压变质岩石中最重要的变质矿物之一,是研究俯冲带深部变质和熔融过程的理想研究对象.通过对俯冲带内不同条件下形成的石榴石进行详细研究,确定了岩浆成因、变质成因和转熔成因石榴石.岩浆石榴石是岩浆熔体在冷却过程中结晶形成,成分主要为锰铝榴石-铁铝榴石,通常含有石英、长石、磷灰石等晶体包裹体.变质石榴石是在亚固相条件下通过变质反应形成,包裹体为参与变质反应的矿物组合;进变质生长的石榴石通常显示核部到边部锰铝榴石降低的特征.转熔石榴石是在超固相条件下通过转熔反应形成,通常含有晶体包裹体,其中既有从转熔熔体结晶的矿物包裹体,也有转熔反应残留的矿物包裹体.对超高压变质岩石中转熔石榴石的识别,可以为深俯冲陆壳岩石的部分熔融提供重要的岩石学证据,是大陆俯冲带部分熔融研究的重要进展之一.   相似文献   

4.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

5.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

6.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes,mostly barroisite.Opinions on the peak metamorphic P-T condition,PT path and mineral paragenesis of it are still in dispute.Generally,HP eclogite involves garnet,omphacite, hornblendes and quartz,with or without glaucophane,zoisite and phengite.The garnet has compositional zoning with X_(Mg) increase,X_(Ca) and X_(Mn) decrease from core to rim,which indicates a progressive metamorphism.The phase equilibria of the ...  相似文献   

7.
In this paper we show that thermodynamic forward modelling, using Gibbs energy minimisation with consideration of element fractionation into refractory phases and/or liberated fluids, is able to extract information about the complex physical and chemical evolution of a deeply subducted rock volume. By comparing complex compositional growth zonations in garnets from high-and ultra-high pressure samples with those derived from thermodynamic forward modelling, we yield an insight into the effects of element fractionation on composition and modes of the co-genetic metamorphic phase assemblage. Our results demonstrate that fractionation effects cause discontinuous growth and re-crystallisation of metamorphic minerals in high pressure rocks. Reduced or hindered mineral growth at UHP conditions can control the inclusion and preservation of minerals indicative for UHP metamorphism, such as coesite, thus masking peak pressure conditions reached in subducted rocks.Further, our results demonstrate that fractional garnet crystallisation leads to strong compositional gradients and step-like zonation patterns in garnet, a feature often observed in high-and ultra-high pressure rocks. Thermodynamic forward modelling allows the interpretation of commonly observed garnet growth zonation patterns in terms of garnet forming reactions and the relative timing of garnet growth with respect to the rock's pressure–temperature path. Such a correlation is essential for the determination of tectonic and metamorphic rates in subduction zones as well as for the understanding of trace element signatures in subduction related rocks. It therefore should be commonplace in the investigation of metamorphic processes in subduction zones.  相似文献   

8.
1∶5万区域地质调查首次在中祁连地块北缘发现的退变榴辉岩,呈构造岩块分布于大羊陇一带的变质基底中。岩相学和矿物学研究显示,石榴石的矿物包体和化学成分具有进变质环带的特征,属于C类榴辉岩。石榴石核部成分以及残留于核部的黑云母、斜长石等矿物包体代表了进变质阶段(M1)矿物组合,计算得到其温压条件为568~580 ℃和0.80~0.82 GPa。大致估算得峰期榴辉岩相阶段(M2)温压条件为(669±5) ℃和(2.1±0.2) GPa。石榴石“白眼圈”结构指示了等温减压退变质作用,利用局部的平衡矿物获得高角闪岩相退变质阶段(M3)的温压条件为681~705 ℃和0.68~0.71 GPa。进一步的退变质作用发生在低角闪岩相条件下,以基质中出现粗粒的角闪石和斜长石为特征,估算得到这一阶段(M4)温压分别为500~545 ℃和0.38~0.43 GPa。上述变质过程形成一个顺时针的p-T演化轨迹,暗示板片经历过快速俯冲和折返。榴辉岩的锆石CL图像显示锆石大部分发光度低,为无分带、弱分带或海绵状分带,边部发育宽约5 μm的强阴极发光带,主体表现为变质增生锆石的特征。LA-ICP-MS锆石U-Pb定年获得峰期榴辉岩相变质的上限年龄为(485±22) Ma。根据岩石地球化学特征和构造环境判别,大羊陇榴辉岩的原岩为MORB,推测属于北祁连洋壳的组成部分。结合中祁连地块北缘广泛发育弧岩浆岩,确定了晚寒武世-中奥陶世北祁连洋壳存在向南的俯冲作用,其俯冲极性为南北双向俯冲。  相似文献   

9.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

10.
《Geodinamica Acta》2013,26(1):91-105
Slices of continental crust pertinent to the lower Austroalpine domain of the western Alps, crop out within the ophiolitic Piemonte Zone. Among them, the Châtillon slice was studied in detail. The slice consists of orthogneiss with subordinate metabasics and very minor paraschist. The garnet-phengite-epidote-albite orthogneiss is characterised by polyphase garnet porphyroclasts. Metabasics consist of prasinite lenses and eclogite relics. Phengite-clinozoisite eclogite is characterised by small garnet idioblasts with prograde zoning; jadeite content in omphacite increases towards the rim; Si content in phengite decreases towards the rim. Garnet-glaucophane-phengiteparagonite micaschist is characterised by polymetamorphic garnet porphyroclasts, and small Alpine garnet idioblasts. A pre-Alpine amphibolite-facies metamorphism is inferred for the polymetamorphic rocks of the Châtillon slice. Paragneiss and micaschist probably derive from pre-Alpine “kinzigites”; the orthogneiss protolith was a late-Variscan porphyritic granitoid. Thermobarometry in the eclogite constrains the metamorphic peak at T ≤ 560 °C and P = 16 kbar. The HP minerals were partly retrogressed to greenschist-facies assemblages during the late Alpine tectono-metamorphic recrystallisation. The inferred Alpine P-T conditions are consistent with those for other Penninic and Austro-Alpine nappes of the northwestern internal Alps. The Châtillon slice is very similar to the Eclogitic Micaschists Complex of the Sesia-Lanzo Zone and to the other eclogite-facies Austroalpine slices of the Dent Blanche Nappe, but it could also represent a portion of the Sesia-Lanzo Zone basement, which experienced a somewhat different subduction depth. The tectonic position of the Châtillon slice within the Piemonte Zone is essential to reconstruct the geometric relationships in the Austroalpine-Piemonte nappe stack of the northwestern internal Alps.  相似文献   

11.
In order to better understand the role of fluids during subduction and subsequent exhumation, we have investigated whole-rock and mineral chemistry (major and trace elements) and Li, B as well as O, Sr, Nd, Pb isotopes on selected continuous drill-core profiles through contrasting lithological boundaries from the Chinese Continental Scientific Drilling Program (CCSD) in Sulu, China. Four carefully selected sample sets have been chosen to investigate geochemical changes as a result of fluid mobilization during dehydration, peak metamorphism, and exhumation of deeply subducted continental crust. Our data reveal that while O and Sr-Nd-Pb isotopic compositions remain more or less unchanged, significant Li and/or B isotope fractionations occur between different lithologies that are in close contact during various metamorphic stages. Samples that are supposed to represent prograde dehydration as indicated by veins formed at high pressures (HP) are characterized by element patterns of highly fluid-mobile elements in the veins that are complementary to those of the host eclogite. A second sample set represents a UHP metamorphic crustal eclogite that is separated from a garnet peridotite by a thin transitional interface. Garnet peridotite and eclogite are characterized by a >10% difference in MgO, which, together with the presence of abundant hydroxyl-bearing minerals and compositionally different clinopyroxene grains demonstrate that both rocks have been derived from different sources that have been tectonically juxtaposed during subduction, and that hydrous silicate-rich fluids have been added from the subducting slab to the mantle. Two additional sample sets, comprising retrograde amphibolite and relatively fresh eclogite, demonstrate that besides external fluids, internal fluids can be responsible for the formation of amphibolite. Li and B concentrations and isotopic compositions point to losses and isotopic fractionation during progressive dehydration. On the other hand, fluids with isotopically heavier Li and B are added during retrogression. On a small scale, mantle-derived rocks may be significantly metasomatized by fluids derived from the subducted slab. Our study indicates that during high-grade metamorphism, Li and B may show different patterns of enrichment and of isotopic fractionation.  相似文献   

12.
名义上无水矿物的水含量研究对于认识俯冲带流体活动和地球动力学具有重要意义.对大别山金河桥榴辉岩中石榴石进行了傅里叶变换红外光谱分析和主微量元素分析,结果表明石榴石含有分子水和结构羟基,分别为 < 1×10-6~1 946×10-6和< 1×10-6~1 347×10-6.石榴石羟基含量与Ca、Na、Ti、Zr和Pr正相关,而与Si负相关,表明羟基结合机制以水榴石替代为主并伴有其他机制.分子水主要为初始水或折返过程中羟基转化形成.石榴石总水含量为 < 1×10-6~3 293×10-6,最大值对应于峰期超高压石榴石水储存能力.水在峰期石榴石中可达到饱和.石榴石变化的水含量受原岩性质、流体可获得性、压力和温度等多种因素控制,但主要由折返过程中降压脱水导致.石榴石平均总水含量为749×10-6~1 164×10-6,是俯冲板片向地幔水传输的重要介质.   相似文献   

13.
胶北地块粉子山群石榴云母片岩中石榴石变斑晶内包裹物迹线明显,保留了岩石形成过程中的多期变质变形信息。电子探针成分面扫描图显示石榴石成分环带明显,可分为核部、幔部和边部。石榴石中MgO、FeO、MnO和CaO含量变化特征表明其核部到边部温度先升高后降低,对应进变质及退变质过程。根据原位独居石Y元素成分面扫描图显示,部分独居石颗粒由核部到边部Y含量呈现逐渐降低趋势,说明测得的232.6±1.1Ma~229.5±3.7Ma的独居石U-Pb年龄,对应石榴石的进变质生长过程。结合1869±72Ma的锆石U-Pb年龄数据,可推断粉子山群石榴云母片岩至少经历了古元古代及三叠纪两期变质事件的改造。粉子山群石榴云母片岩卷入了苏鲁超高压变质带的俯冲碰撞造山事件。电子探针成分分析结果表明粉子山群石榴云母片岩中的石榴石属于铁铝榴石,反映出经受中级区域变质作用的特征。说明粉子山群石榴云母片岩虽然参与了三叠纪苏鲁超高压变质带的俯冲碰撞造山过程,但俯冲深度较浅。这可用大陆俯冲过程中上盘的俯冲剥蚀来解释,并可为陆-陆碰撞俯冲剥蚀模式提出的扬子板片在240~220Ma的深俯冲作用过程中拽动胶北地块向下俯冲又折返的运动过程提供佐证,但胶北地块是否经历了深俯冲超高压变质作用,还需要进一步验证。  相似文献   

14.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

15.
关于现今板块构造体制何时启动是目前地球科学研究的焦点问题。本文在原报道的古元古代丰镇火成碳酸岩中发现的榴辉岩捕虏体基础上,开展了详细的岩石学研究。该榴辉岩捕虏体分为两种类型:即相对富石榴石的Fz-2和贫石榴石的Fz-16,它们产于同一地点,且具有相同的矿物成分和结构构造特征。Xu et al.(2018)的研究表明该捕虏体具有1839±26Ma和1766±7Ma的独居石U-Th-Pb年龄且具有大洋辉长岩原岩的全岩成分特征。本文通过进一步的岩相学研究发现该榴辉岩至少经历了两期变质阶段:M1,角闪石/绿帘石-榴辉岩阶段;M2,硬柱石-榴辉岩阶段。具有放射状裂纹包裹特征的柯英石假象在石榴石变斑晶和基质绿辉石中以包体形式出现。以蓝晶石与黝帘石共存为特征的柱状硬柱石假象,也偶尔以包体形式存在于石榴石中。变斑晶石榴石分为富含包体的核部和比较干净的边部。石榴石从中心到边部具有明显的镁铝榴石含量增加和钙铝榴石含量降低的环带特征,通过相平衡模拟和等值线投图得到其温压范围为2.6~3.7GPa和655~670℃,记录了从M1到M2的近等温增压的进变质过程。通过石榴石边部-绿辉石-蓝晶石-石英的地质温压计计算得到温压条件为3.0GPa、734℃。金红石中的锆含量温度计也给出了相似的温度条件,即在2.6~3.7GPa压力时为601~685℃。石榴石边部的柯石英假象和硬柱石假象支持了M2硬柱石-榴辉岩阶段的存在,这表明丰镇古元古代榴辉岩可能是目前发现的世界上最古老的低温超高压变质岩。同时,我们得到该榴辉岩代表的进变质过程中的地温梯度为216±35℃/GPa,证明至少在~1.8Ga以来代表现今板块构造体制的板块冷俯冲作用就开始启动了。  相似文献   

16.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

17.
在滇西鲁甸地区金沙江结合带新发现退变榴辉岩,其在野外呈透镜体状产于石榴子石白云母石英片岩中.利用电子探针及激光拉曼分析发现石榴子石和锆石中残留绿辉石包体.石榴子石及基质中的白云母为多硅白云母(Si(p.f.u)=3.27~3.53),指示岩石经历了高压变质作用过程.石榴子石发育进变质生长成分环带.岩相学及矿物化学特征显示,退变榴辉岩大致经历了进变质角闪岩相、峰期榴辉岩相、早期退变质以及晚期强退变这4个世代矿物组合,各阶段典型的矿物组合依次为Grt+AmpI+Qtz、Grt+Omp+Rt+Qtz+Phe、Pl+Di+AmpⅡ+Ilm+Spn+Qtz、AmpⅢ+Pl+Czo+Ilm+Qtz.该新发现对金沙江结合带复杂的变质演化P-T-t轨迹样式及年代格架、以金沙江洋为代表的整个西南三江地区古特提斯洋-陆俯冲-碰撞-造山的复杂构造演化历史以及微陆块的拼贴机制等关键科学问题的解决提供了极为重要的素材和更多的约束,具有重要的科学意义.   相似文献   

18.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


19.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

20.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号