首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Thermodynamic modelling of diffusion-controlled garnet growth   总被引:2,自引:2,他引:0  
Numerical thermodynamic modelling of mineral composition and modes for specified pressure-temperature paths reveals the strong influence of fractional garnet crystallisation, as well as water fractionation, on garnet growth histories in high pressure rocks. Disequilibrium element incorporation in garnet due to the development of chemical inhomogeneities around porphyroblasts leads to pronounced episodic growth and may even cause growth interruptions. Discontinuous growth, together with pressure- and temperature-dependent changes in garnet chemistry, cause zonation patterns that are indicative of different degrees of disequilibrium element incorporation. Chemical inhomogeneities in the matrix surrounding garnet porphyroblasts strongly affect garnet growth and lead to compositional discontinuities and steep compositional gradients in the garnet zonation pattern. Further, intergranular diffusion-controlled calcium incorporation can lead to a characteristic rise in grossular and spessartine contents at lower metamorphic conditions. The observation that garnet zonation patterns diagnostic of large and small fractionation effects coexist within the same sample suggests that garnet growth is often controlled by small-scale variations in the bulk rock chemistry. Therefore, the spatial distribution of garnet grains and their zonation patterns, together with numerical growth models of garnet zonation patterns, yield information about the processes limiting garnet growth. These processes include intercrystalline element transport and dissolution of pre-existing grains. Discontinuities in garnet growth induced by limited element supply can mask traces of the thermobarometric history of the rock. Therefore, thermodynamic modelling that considers fractional disequilibrium crystallisation is required to interpret compositional garnet zonation in terms of a quantitative pressure and temperature path of the host rock.  相似文献   

2.
夏琼霞 《地球科学》2019,44(12):4042-4049
石榴石是高压-超高压变质岩石中最重要的变质矿物之一,是研究俯冲带深部变质和熔融过程的理想研究对象.通过对俯冲带内不同条件下形成的石榴石进行详细研究,确定了岩浆成因、变质成因和转熔成因石榴石.岩浆石榴石是岩浆熔体在冷却过程中结晶形成,成分主要为锰铝榴石-铁铝榴石,通常含有石英、长石、磷灰石等晶体包裹体.变质石榴石是在亚固相条件下通过变质反应形成,包裹体为参与变质反应的矿物组合;进变质生长的石榴石通常显示核部到边部锰铝榴石降低的特征.转熔石榴石是在超固相条件下通过转熔反应形成,通常含有晶体包裹体,其中既有从转熔熔体结晶的矿物包裹体,也有转熔反应残留的矿物包裹体.对超高压变质岩石中转熔石榴石的识别,可以为深俯冲陆壳岩石的部分熔融提供重要的岩石学证据,是大陆俯冲带部分熔融研究的重要进展之一.   相似文献   

3.
《International Geology Review》2012,54(10):1253-1277
ABSTRACT

Seafloor subduction and subduction-zone metamorphism (SZM) are understood to be the very cause of both subduction-zone magmatism and mantle compositional heterogeneity. In this article, we compile geochemical data for blueschist and eclogite facies rocks from global palaeo-subduction-zones in the literature, including those from the Chinese Western Tianshan ultrahigh pressure (UHP) metamorphic belt. We synthesize our up-to-date understanding on how chemical elements behave and their controls during subduction-zone metamorphism. Although the compositional heterogeneity of metamorphic minerals from subducted rocks has been recently reported, we emphasize that the mineral compositional heterogeneity is controlled by elemental availability during mineral growth, which is affected by the protolith composition, the inherited composition of precursor minerals, and the competition with neighbouring growing minerals. In addition, given the likely effects of varying protolith compositions and metamorphic conditions on elemental behaviours, we classify meta-mafic rocks from global palaeo-subduction-zones with varying metamorphic conditions into groups in terms of their protolith compositions (i.e. ocean island basalt (OIB)-like, enriched mid-ocean ridge basalt (MORB)-like, normal [N]-MORB-like), and discuss geochemical behaviours of chemical elements within these co-genetic groups rather than simply accepting the conclusions in the literature. We also discuss the geochemical consequences of SZM with implications for chemical geodynamics, and propose with emphasis that: (1) the traditionally accepted ‘fluid flux induced-melting’ model for arc magmatism requires revision; and (2) the residual subducted ocean crust cannot be the major source material for OIB, although it can contribute to the deep mantle compositional heterogeneity. We also highlight some important questions and problems that need further investigations, e.g. complex subduction-zone geochemical processes, different contributions of seafloor subduction and resultant subduction of continental materials, and the representativeness of studied HP–UHP metamorphic rocks.  相似文献   

4.
自20世纪80年代在大陆地壳岩石中发现柯石英和金刚石等超高压变质矿物以来,大陆深俯冲和超高压变质作用就成为了固体地球科学研究的前沿和热点领域之一。经过三十余年的研究,已经在大陆地壳的俯冲深度、深俯冲岩石变质P-T-t轨迹、俯冲地壳岩石的折返机制、深俯冲岩石的原岩性质、大陆碰撞过程中的熔/流体活动与元素活动性、俯冲隧道内部不同类型壳幔相互作用、碰撞后岩浆岩的成因、大陆碰撞造山带成矿作用等方面取得了许多重要成果。本文重点对大陆俯冲带超高压岩石部分熔融和不同类型壳幔相互作用近十年来的研究进展进行回顾和总结,并对存在的相关科学问题和未来的研究方向进行了展望。深俯冲大陆地壳的部分熔融主要出现在两个阶段:折返的初期阶段和碰撞后阶段,前者产生了碱性熔体,后者产生了钙碱性熔体。大陆俯冲带壳幔相互作用有两种类型,涉及地幔楔与两种俯冲带流体的交代反应:一是来自深俯冲陆壳的变质脱水/熔融,二是来自先前俯冲古洋壳的变质脱水/熔融。  相似文献   

5.
陈仁旭  郑永飞  龚冰 《岩石学报》2011,27(2):451-468
对超高压变质岩中含水矿物和名义上无水矿物的地球化学研究,极大地深化了我们对大陆碰撞带地壳俯冲和折返过程中流体体制的认识。就流体体制和化学地球动力学来说,有关研究在大别-苏鲁造山带进行的最为详细,因此已经成为研究大陆俯冲带变质的典型地区。本文以大别-苏鲁造山带为对象,从矿物水含量的角度,结合稳定同位素论述了大陆俯冲带流体活动。超高压变质岩中名义上无水矿物含有大量的水,以结构羟基和分子水形式存在。名义上无水矿物中结构羟基和分子水出溶与含水矿物分解共同构成了折返过程中退变质流体的主要来源。名义上无水矿物所释放的水以富集轻的氢氧同位素为特征,而含水矿物分解则提供了富集D的流体来源。折返过程中,名义上无水矿物降压脱水存在亏损D的分子水的优先丢失和不同形式水之间的相互转化。不同岩性的水含量差异导致了它们在折返过程中不同的流体活动行为。大陆板块俯冲和折返过程中,在不同矿物、不同岩性以及板片不同部位之间存在水的再分配;板片的一部分作为富水流体的源,而另一部分可能作为汇。  相似文献   

6.
Ultrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved in multistage exhumation and partial melting, which has obvious influence on the rheological features of the rocks, and thus significantly affect the dynamic behavior of subducted slices. Moreover,partial melting of UHP rocks have significant influence on element mobility and related isotope behavior within continental subduction zones, which is in turn crucial to chemical differentiation of the continental crust and to crust-mantle interaction.Partial melting can occur before, during or after the peak metamorphism of UHP rocks. Post-peak decompression melting has been better constrained by remelting experiments; however, because of multiple stages of decompression, retrogression and deformation, evidence of former melts in UHP rocks is often erased. Field evidence is among the most reliable criteria to infer partial melting. Glass and nanogranitoid inclusions are generally considered conclusive petrographic evidence. The residual assemblages after melt extraction are also significant to indicate partial melting in some cases. Besides field and petrographic evidence, bulk-rock and zircon trace-element geochemical features are also effective tools for recognizing partial melting of UHP rocks. Phase equilibrium modeling is an important petrological tool that is becoming more and more popular in P-T estimation of the evolution of metamorphic rocks; by taking into account the activity model of silicate melt, it can predict when partial melting occurred if the P-T path of a given rock is provided.UHP silicate melt is commonly leucogranitic and peraluminous in composition with high SiO_2,low MgO, FeO, MnO, TiO_2 and CaO, and variable K_2 O and Na_2 O contents. Mineralogy of nanogranites found in UHP rocks mainly consists of plagioclase + K-feldspar + quartz, plagioclase being commonly albite-rich.Trace element pattern of the melt is characterized by significant enrichment of large ion lithophile elements(LILE), depletion of heavy rare earth elements(HREE) and high field strength elements(HFSE),indicating garnet and rutile stability in the residual assemblage. In eclogites, significant Mg-isotope fractionation occurs between garnet and phengite; therefore, Mg isotopes may become an effective indicator for partial melting of eclogites.  相似文献   

7.
东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩   总被引:1,自引:0,他引:1  
牛贺才  单强  张兵  罗勇  杨武斌  于学元 《岩石学报》2009,25(6):1484-1491
继报道了超高压成因的石榴辉石岩和石英菱镁岩之后,作者在扎河坝地区又发现了具有超高压成因特征的石榴角闪岩。扎河坝石榴角闪岩主要组成矿物为角闪石、石榴石、辉石和钠长石,它不但含硬玉、多硅白云母等高压变质矿物,而且还残留着具有超高压成因特征的超硅石榴石和超硅辉石。根据野外产状和矿物组成特征,扎河坝石榴角闪岩可以细分成含硬玉石榴角闪岩和含多硅白云母石榴角闪岩两类,它们的原岩为大洋玄武岩。石榴角闪岩的厘定进一步证实在扎河坝蛇绿混杂岩带内确实存在着超深俯冲后折返的洋壳,同时超深俯冲洋壳的组成也较复杂,包括沉积岩、辉长岩和大洋玄武岩等。石榴角闪岩、石英菱镁岩及石榴辉石岩等超高压变质岩的存在表明扎河坝蛇绿岩带是一条大洋板块的超深俯冲带,它可能通过克拉玛依蛇绿岩带西延出境,形成一条横贯东西准噶尔北缘的超深俯冲带。这条超深俯冲带的发现为研究新疆北部早古生代洋陆转换过程及机制提供了新的视野和思路,对深入探讨准噶尔盆地北缘及阿尔泰南缘早古生代壳幔相互作用及中亚造山带形成的动力学机制具有重要的启示。  相似文献   

8.
大陆碰撞过程中熔/流体的组成和演化是研究大陆深俯冲动力学的重要内容,而超高压岩石记录了大陆俯冲和折返过程中的熔/流体-岩石相互作用,因而是研究大陆碰撞过程中熔/流体组成和演化的天然实验室。大陆俯冲带高压/超高压变质矿物中多相固体包裹体作为熔/流体活动的直接记录,为我们提供了揭示超高压变质过程中熔/流体演化的重要制约。近年来,围绕超高压岩石中多相固体包裹体的形成时间、演化过程及其所反映的俯冲带超高压变质熔/流体的组成和性质,进行了大量的研究工作。超高压岩石中多相固体包裹体的发现,为理解峰期超高压变质流体的组成和演化提供了重要制约,同时也为研究俯冲板片-地幔楔界面的熔/流体交代作用提供了新的途径。本文从多相固体包裹体形成机制、结构形态特征、矿物化学成分及其地质地球化学意义等方面,对于超高压变质岩中多相固体包裹体的研究现状和存在的问题进行系统地总结和探讨,以期促进多相固体包裹体的岩石学和地球化学研究。  相似文献   

9.
郭顺  唐盼  陈意 《地球科学》2019,44(12):4072-4080
超高压岩石-脉体体系是认识俯冲带流体性质和行为的天然实验室.通过总结大别超高压变质带3个榴辉岩(角闪岩)-脉体体系的研究成果,探讨了大陆俯冲带变质流体的溶解-结晶过程和氧逸度变化规律以及流体对轻元素硼的迁移过程.对榴辉岩-复合高压脉体的研究发现超高压流体通过溶解矿物富集溶质组分,流体随后经历3期结晶过程,分别形成绿辉石-绿帘石脉、绿帘石-石英脉和蓝晶石-绿帘石-石英脉.绿帘石La、Cr和δEu值是判断结晶次序的关键指标.对榴辉岩-角闪岩-低压脉体研究表明大陆俯冲带低压变质流体的氧逸度明显高于高压-超高压变质流体.高氧逸度条件也导致一些反常矿物(如退变金红石)的生长.对含电气石榴辉岩-脉体研究揭示变质碳酸盐岩是大陆俯冲板片中重硼同位素的重要储库,其在汇聚板块边界的脱硼作用显著影响深部硼循环.上述研究成果为理解俯冲带变质流体演化和物质循环提供重要科学依据.   相似文献   

10.
胶北地块粉子山群石榴云母片岩中石榴石变斑晶内包裹物迹线明显,保留了岩石形成过程中的多期变质变形信息。电子探针成分面扫描图显示石榴石成分环带明显,可分为核部、幔部和边部。石榴石中MgO、FeO、MnO和CaO含量变化特征表明其核部到边部温度先升高后降低,对应进变质及退变质过程。根据原位独居石Y元素成分面扫描图显示,部分独居石颗粒由核部到边部Y含量呈现逐渐降低趋势,说明测得的232.6±1.1Ma~229.5±3.7Ma的独居石U-Pb年龄,对应石榴石的进变质生长过程。结合1869±72Ma的锆石U-Pb年龄数据,可推断粉子山群石榴云母片岩至少经历了古元古代及三叠纪两期变质事件的改造。粉子山群石榴云母片岩卷入了苏鲁超高压变质带的俯冲碰撞造山事件。电子探针成分分析结果表明粉子山群石榴云母片岩中的石榴石属于铁铝榴石,反映出经受中级区域变质作用的特征。说明粉子山群石榴云母片岩虽然参与了三叠纪苏鲁超高压变质带的俯冲碰撞造山过程,但俯冲深度较浅。这可用大陆俯冲过程中上盘的俯冲剥蚀来解释,并可为陆-陆碰撞俯冲剥蚀模式提出的扬子板片在240~220Ma的深俯冲作用过程中拽动胶北地块向下俯冲又折返的运动过程提供佐证,但胶北地块是否经历了深俯冲超高压变质作用,还需要进一步验证。  相似文献   

11.
The main hole (MH), and pre-pilot holes PP1, and PP3 of the Chinese Continental Scientific Drilling Project (CCSD) penetrated three different garnet peridotite bodies in the Sulu ultrahigh pressure (UHP) metamorphic belt, which are 80 m, 120 m, and 430 m thick, respectively. The bodies occur as tectonic blocks hosted in eclogite (MH peridotite) and gneisses (PP1 and PP3 peridotites). The peridotites in the MH are garnet wehrlites, whose protoliths were ultramafic cumulates based on olivine compositions (Fo79-89) and other geochemical features. Zoned garnet and omphacite (with 4-5 wt.% Na2O) are typical metamorphic minerals in these rocks, and, along with P-T estimates based on mineral pairs, suggest that the rocks have undergone UHP metamorphism. SHRIMP U-Pb isotope dating of zircon from the garnet wehrlite yielded a Paleozoic protolith age (ca. 346-461 Ma), and a Mesozoic UHP metamorphic age (ca. 220-240 Ma). The peridotites in PP1 consist of interlayered garnet (Grt)-bearing and garnet-free (GF) peridotite. Both types of peridotite have depleted mantle compositions (Mg# = 90-92) and they display transitional geochemical features. The intercalated layers probably reflect variations in partial melting rather than pressure variations during metamorphism, and the garnets may have been formed by exsolution from orthopyroxene during exhumation. These peridotites were probably part of the mantle wedge above the subduction zone that produced the UHP metamorphism and thus belonged to the North China Block before its tectonic emplacement. The exhumation of the subducted Yangtze Block brought these mantle fragments to shallow crustal levels. The ultramafic rocks in PP3 are dominantly dunite with minor garnet dunite. Their high Mg# (92-93) and relatively uniform chemical compositions indicate that they are part of a depleted mantle sequence. The presence of garnet replacing spinel and enclosing pre-metamorphic minerals such as olivine, clinopyroxene and spinel suggests that these rocks have undergone progressive metamorphism. SHRIMP U-Pb isotope dating of zircon from these rocks yielded two age groups: 726 ± 56 Ma for relic magmatic zircon grains and 240 ± 2.7 Ma for the newly formed metamorphic zircon. The older group is similar in age to granitic intrusions within the Dabie-Sulu belt, suggesting that the PP3 garnet peridotite may record the early emplacement of the peridotite into the crust. The younger dates coincide with the age of UHP metamorphism during continent-continent collision between the Yangtze and North China Blocks, suggesting that these peridotites were subducted to depths equivalent to the coesite facies and later exhumed. Thus, the garnet peridotites in the CCSD cores include both ultramafic rocks that existed originally in the subducted plate and rocks from the mantle wedge above the subducted plate, i.e., part of the North China Block.  相似文献   

12.
北秦岭松树沟榴辉岩的确定及其地质意义   总被引:9,自引:8,他引:1  
陈丹玲  任云飞  宫相宽  刘良  高胜 《岩石学报》2015,31(7):1841-1854
松树沟石榴石角闪岩(榴闪岩)呈透镜状产于松树沟超镁铁岩旁侧的斜长角闪岩中,一直以来被认为是形成于接触交代变质或麻粒岩相变质过程。详细岩相学及矿物元素分析,在榴闪岩的基质矿物、石榴石幔部及锆石包体中发现残留的绿辉石,而且石榴石也保存了明显的进变质主、微量元素成分环带,表明松树沟榴闪岩为榴辉岩退变质的产物,至少经历了从角闪岩相到榴辉岩相再到角闪岩相的三阶段顺时针PT演化过程。锆石定年结果得到榴辉岩的变质年龄为500±8Ma,原岩结晶时代为796±16Ma,与秦岭岩群北侧官坡超高压榴辉岩的变质年龄和原岩年龄完全一致,也与北秦岭区域高压-超高压变质时代和原岩的结晶时代一致。表明松树沟榴辉岩与北秦岭造山带已发现的高压-超高压变质岩石一起都应是古生代大陆深俯冲作用的结果,而松树沟超镁铁岩可能是俯冲的大陆板片在折返过程中携带的俯冲隧道中的交代地幔岩。  相似文献   

13.
低温超高压变质岩具有极低的地热梯度,其变质演化对于认识板块间相互作用的动力学过程以及弧地壳的生长机制具有重要意义。西南天山造山带发育了世界上少有的经历过深俯冲作用且具有洋壳属性的典型低温超高压变质地质体。近几年来对该造山带中的超高压变质岩开展了大量深入细致的岩石学研究工作,取得了一系列新进展。变基性岩和变沉积岩系岩石中柯石英的普遍发现,直接证明西南天山变质蛇绿混杂岩曾经俯冲到上地幔深度,且具有极低的地热梯度,与热力学模拟结果一致。柯石英的稀少以及大量不同类型柯石英假像的存在,说明在折返过程中发生了强烈的退变质叠加,只有刚性较大且没有经历碎裂-愈合作用的矿物(如石榴石)才有可能保存柯石英。综合岩相学证据和相平衡计算结果,确定西南天山造山带北部的高压地质体(即哈布腾苏-科布尔特单元)整体经历过超高压变质作用,南部的高压地质体峰期压力未达到柯石英稳定域。超高压和高压变质地体的空间分布特点指示了古天山洋由南向北的俯冲极性。这些基础岩石学研究工作的开展对于揭示冷俯冲带的深部物理化学过程以及建立中亚南天山造山带演化的精细模型具有重要意义。  相似文献   

14.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

15.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

16.
Contrasting metamorphic conditions determined by chemical geothermobarometric investigations of ultrahigh-pressure (UHP) lenses surrounded by high-pressure (HP) and medium-pressure (MP) felsic country rocks are an enigmatic feature of UHP terranes. One of the major questions arising is whether the UHP lenses and the country rocks are a product of different peak metamorphic conditions corresponding to different maximum depth or whether country rocks also experienced UHP conditions but equilibrated and/or re-equilibrated at a different metamorphic stage. Here we address this question to the central Saxonian Erzgebirge in the northwestern Bohemian Massif, Germany. In order to screen the variety of garnet from lithologies occurring in the study area, we analyzed the detrital garnet record from seven modern stream sands. In addition to 700 inclusion-bearing garnet grains previously studied from the 125–250 μm grain-size fraction, we analyzed the 63–125 and 250–500 μm fractions and extended the dataset to overall 2100 inclusion-bearing grains. The new findings of coesite and diamond inclusions in several garnet grains, which are in compositional contrast to garnet of the known UHP lenses but match with those of the felsic country rocks, show that considerable parts of the country rocks underwent UHP metamorphism. Melt inclusions containing cristobalite, kokchetavite, and kumdykolite in garnet derived from the country rocks point to partial melting and re-equilibration during exhumation at HP/HT conditions. Although an amalgamation of rocks which reached different maximum depth may be responsible for some of the contrasting peak metamorphic conditions, the mineralogical evidence for UHP conditions in the felsic country rocks surrounding the UHP lenses proves a largely coherent slab subducted to UHP conditions. Furthermore, the presence of coesite in the subducting voluminous felsic crust and its transformation to quartz during exhumation have great implications for buoyancy development during the metamorphic cycle, which may explain the high exhumation rates of UHP terranes.  相似文献   

17.
赵中岩  方爱民 《岩石学报》2005,21(4):1109-1116
超高压变质岩是大陆深俯冲作用的产物。超高压变质岩在深俯冲和快速折返过程中,经历了长距离地构造搬运和构造力的作用。其构造变形主要集中在韧性剪切带中,并发生强烈地塑性流变。研究超高压变质构造岩的显微构造及其变形机制对于深入了解大陆壳岩石在深俯冲过程中的流变学行为有十分重要的意义,山东仰口的超高压韧性剪切带中榴辉岩质和花岗质糜棱岩记录了超高压变形的历史。在超高压条件下的稳定矿物绿辉石、多硅白云母、兰晶石和钾长石具有不规则波状消光、亚晶界、核幔构造和动态重结晶等显微构造特征,TEM 研究揭示了大量的位错构造,表明位错蠕变是其主要的变形机制。在花岗质糜棱岩中,金红石在刚性矿物的压力影中沉积,细粒的石榴石条带平行片理延伸,都说明超高压变形过程中有流体存在,流体助力的物质扩散迁移是又一个重要的变形机制。依据现有的流变学定律估算的流变应力应该在几十兆帕以上。  相似文献   

18.
Metamorphic dehydration and partial melting are two important processes during continental collision. They have significant bearing on element transport at the slab interface under subduction‐zone P–T conditions. Petrological and geochemical insights into the two processes are provided by a comprehensive study of leucocratic veins in ultrahigh‐pressure (UHP) metamorphic rocks. This is exemplified by this study of a polymineralic vein within phengite‐bearing UHP eclogite in the Dabie orogen. The vein is primarily composed of quartz, kyanite, epidote and phengite, with minor accessory minerals such as garnet, rutile and zircon. Primary multiphase solid inclusions occur in garnet and epidote from the both vein and host eclogite. They are composed of quartz ± K‐feldspar ± plagioclase ± K‐bearing glass and exhibit irregular to negative crystal shapes that are surrounded by weak radial cracks. This suggests their precipitation from solute‐rich metamorphic fluid/melt that involved the reaction of phengite breakdown. Zircon U–Pb dating for the vein gave two groups of concordant ages at 217 ± 2 and 210 ± 2 Ma, indicating two episodes of zircon growth in the Late Triassic. The same minerals from the two rocks give consistent δ18O and δD values, suggesting that the vein‐forming fluid was directly derived from the host UHP eclogite. The vein is much richer in phengite and epidote than the host eclogite, suggesting that the fluid is associated with remarkable concentration of such water‐soluble elements as LILE and LREE migration. Garnet and rutile in the vein exhibit much higher contents of HREE (2.2–5.7 times) and Nb–Ta (1.8–2.0 times) than those in the eclogite, indicating that these normally water‐insoluble elements became mobile and then were sunken in the vein minerals. Thus, the vein‐forming agent would be primarily composed of the UHP aqueous fluid with minor amounts of the hydrous melt, which may even become a supercritical fluid to have a capacity to transport not only LILE and LREE but also HREE and HFSE at subduction‐zone metamorphic conditions. Taken together, significant amounts of trace elements were transported by the vein‐forming fluid due to the phengite breakdown inside the UHP eclogite during exhumation of the deeply subducted continental crust.  相似文献   

19.
Metasedimentary rocks, a major component of the continental crust, are abundant within ultra‐high pressure (UHP) metamorphic terranes related to continental collisions. The presence of diamond, coesite, and relics of decompressed minerals in these rocks suggests that they were subducted to a depth of more than 150–250 km. Reconnaissance experiments at 9–12 GPa and 1000–1300 °C on compositions corresponding to felsic rocks from diamond‐bearing UHP terranes of Germany and Kazakhstan show that at higher pressures they consist of majoritic garnet, Al‐Na‐rich clinopyroxene, stishovite, solid solution of KAlSi3O8‐NaAlSi3O8 hollandite, topaz‐OH, and TiO2 with α‐PbO2 structure. Comparison of our data with experiments conducted by others at similar P–T conditions shows differences, which are due to variations in bulk chemistry and the type of starting material (gel, oxides, minerals). These differences may affect correct establishment of the ‘point of no return’ of subducted continental lithologies. This paper discusses the implication of the experimental data with regard to naturally existing UHP metamorphic rocks and their significance for our understanding of the deep subduction of continental material.  相似文献   

20.
Diamondiferous rocks from the Kokchetav Massif, Kazakhstan, represent deeply subducted continental crust. In order to constrain the age of ultra high pressure (UHP) metamorphism and subsequent retrogression during exhumation, zircons from diamondiferous gneisses and metacarbonates have been investigated by a combined petrological and isotopic study. Four different zircon domains were distinguished on the basis of transmitted light microscopy, cathodoluminescence, trace element contents and mineral inclusions. Mineral inclusions and trace element characteristics of the zircon domains permit us to relate zircon growth to metamorphic conditions. Domain 1 consists of rounded cores and lacks evidence of UHP metamorphism. Domain 2 contains diamond, coesite, omphacite and titanian phengite inclusions providing evidence that it formed at UHP metamorphic conditions (P>43 kbar; T~950 °C). Domain 3 is characterised by low-pressure mineral inclusions such as garnet, biotite and plagioclase, which are common minerals in the granulite-facies overprint of the gneisses (P~10 kbar; T~800 °C). This multi-stage zircon growth during cooling and exhumation of the diamondiferous rocks can be best explained by zircon growth from Zr-saturated partial melts present in the gneisses. Domain 4 forms idiomorphic overgrowths and the rare earth element pattern indicates that it formed without coexisting garnet, most probably at amphibolite-facies conditions (P~5 kbar; T~600 °C). The metamorphic zircon domains were dated by SHRIMP ion microprobe and yielded ages of 527LJ, 528NJ and 526LJ Ma for domains 2, 3 and 4 respectively. These indistinguishable ages provide evidence for a fast exhumation beyond the resolution of SHRIMP dating. The mean age of all zircons formed between UHP metamorphic conditions and granulite-facies metamorphism is 528Dž Ma, indicating that decompression took place in less than 6 Ma. Hence, the deeply subducted continental crust was exhumed from mantle depth to the base of the crust at rates higher than 1.8 cm/year. We propose a two-stage exhumation model to explain the obtained P-T-t path. Fast exhumation on top of the subducted slab from depth >140 to ~35 km was driven by buoyancy and facilitated by the presence of partial melts. A period of near isobaric cooling was followed by a second decompression event probably related to extension in a late stage of continental collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号