首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过去几十年,气候变化和极端气候事件造成的经济损失和灾害显著增加.虽然全球的科学家在理解和预测气候变异方面做出了巨大的努力,但当前在气候预测领域仍然存在几个重大难题.2020年,依托于国家自然科学基金基础科学中心项目的气候系统预测研究中心(CCSP)成立了,该中心旨在应对和处理气候预测领域的三大科学难题:厄尔尼诺-南方涛动(ENSO)预测,延伸期天气预报,年际-年代际气候预测,并为更加准确的气候预测和更加有效的灾害防御提供科学依据.因此,本文介绍了CCSP的主要目标和面对的科学挑战,回顾了CCSP在季风动力过程,陆-气相互作用和模式开发,ENSO变率,季节内振荡,气候预测等方面已取得的重要研究成果.未来CCSP将继续致力于解决上述领域的关键科学问题.  相似文献   

2.
Summer weather extremes (e.g., heavy rainfall, heat waves) in China have been linked to anomalies of summer monsoon circulations. The East Asian subtropical westerly jet (EASWJ), an important component of the summer monsoon circulations, was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes. Based on EOF analysis, the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan. This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China. The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer, and induce anomalous weather extremes in the corresponding areas. The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China, which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province. The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.摘要东亚副热带西风急流是影响中国极端天气的重要原因之一, 然而之前的研究主要关注整个夏季急流的变率, 对其早夏和晚夏变率的区别及其对极端天气的影响关注较少. 本文研究了早夏和晚夏东亚副热带西风急流季节内变化特征的区别, 以及这种区别带来的极端天气的差异及其可能的动力学机制. 研究结果表明, 相比于早夏, 晚夏急流季节内变化中心位置偏西偏北, 通过改变垂直运动和水汽输送可以影响极端降水和湿热浪在相应区域的发生概率.  相似文献   

3.
Soil moisture drought (SMD) directly affects agricultural yield and land water resources. Understanding and predicting the occurrences and evolution of SMD are of great importance for a largely agricultural country such as China. Compared to other drought categories, SMD receives less attention due to the lack of long-term soil moisture datasets. In recent decades, SMD research has been greatly developed in China, benefiting from increased ground and satellite measurements along with state-of-the-art land surface models. Here, the authors provide a brief overview of the recent progress in SMD research in China, focus on historical drought identification and its prediction, and then raise some future perspectives. Based on historical SMD studies, drought frequency has increased overall and drought duration has been prolonged since the 1950s for China as a whole, but they both show substantial temporal variations at the regional scale. Research on SMD prediction has mainly relied on the statistical relationship between soil moisture and climate variables. Few studies based on the dynamical approach in seasonal drought prediction have highlighted the importance of initial conditions and atmospheric forcing datasets. Given the importance of SMD in agricultural practice and water resource management in China, it is necessary to emphasize the following: 1) conducting research on multiple time scales (e.g., from days to the centurial time scale) and cross-regional drought identification research; and 2) developing a SMD prediction system that takes advantage of climate prediction systems, land surface models, and multisource soil moisture datasets.摘要论文回顾了中国土壤湿度干旱 (SMD) 历史重建和季节预测研究进展, 并对未来研究进行了展望. 自1950s年代以来, 全国整体干旱频率增加, 持续时间延长, 且有明显区域特征. SMD预测多是利用土壤湿度与气候变量之间的统计关系, 而少量基于动力学方法的干旱预测研究强调了初始条件和大气强迫数据对季节尺度干旱预测的重要性. 本论文提出: 1) 加强多时间尺度, 跨区域的SMD研究; 2)联合气候预测系统, 陆面模式和多源土壤湿度数据研制SMD预测系统.  相似文献   

4.
Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP). Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO2, climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region. The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr?2 under present conditions (1936–2005) to ?0.023 Pg C yr?2 under future conditions. In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr?2 under present conditions to ?0.009 Pg C yr?2 under future conditions. This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future. The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP. Considering the responses of soil respiration (RH) or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from0.01°C yr?1 under present conditions to 0.05°C yr?1 under future conditions. CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP. In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered. It is important to estimate the direction and magnitude of C sinks under the C neutrality target.摘要目前, 在区域尺度, NEP趋势变化的强度和影响机制还存在很大的不确定性. 针对这一问题, 我们选取了一带一路覆盖的区域为研究对象, 基于全球陆面模式 (CABLE)和第六次国际耦合模式比较计划 (CMIP6), 评估了历史和未来NEP趋势的变化, 分析了影响的机制. 从过去到未来, CABLE结果表明NEP的趋势从 0.015 Pg C yr?2 减少到 –0.023 Pg C yr?2; CMIP6结果为从0.014 Pg C yr?2转变为–0.009 Pg C yr?2. 气候变化是引起这一变化的主因. 我们的研究结果强调了碳-气候-氮相互作用的重要性, 这对碳中和目标下碳汇潜力的准确估算尤为重要.  相似文献   

5.
The Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System atmospheric component model (FGOALS-f3-L) participated in Phase 6 of the Coupled Model Intercomparison Project, but its reproducibility of surface temperature (Ts) over the Tibetan Plateau (TP) as a key climatically sensitive region remains unclear. This study evaluates the capability of FGOALS-f3-L in reproducing the climatological Ts over the TP relative to the Climate Forecast System Reanalysis. The results show that FGOALS-f3-L can reasonably capture the spatial pattern of Ts but underestimates the annual mean Ts for the whole TP. The simulated Ts for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn. Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback (SAF) term strongly contributes to the annual, winter, and spring mean cold bias in the western TP and to the warm bias in the eastern TP. Compared with the SAF term, the surface sensible and latent heat flux terms make nearly opposite contributions to the Ts bias and considerably offset the bias due to the SAF term. The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP. The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn. Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the Ts bias over the TP.摘要中国科学院全球海洋–大气–陆地耦合模式 (FGOALS-f3-L) 参加了耦合模式比较计划的第六阶段 (CMIP6) 试验,但是其对关键气候敏感地区青藏高原的地表温度的再现能力还不清楚.这项研究用再分析资料CFSR评估了FGOALS-f3-L模式对青藏高原地表温度的再现能力.结果表明, FGOALS-f3-L可以合理模拟整个高原上年平均地表温度的空间分布, 但低估了整个高原上年平均地表温度.模拟的地表温度在整个高原上冬春季表现为冷偏差, 夏秋季表现为暖偏差.基于地表能量平衡方程的进一步定量分析表明, 地表反照率反馈 (SAF) 项极大地贡献了高原西部年平均, 冬春季平均地表温度的冷偏差, 而对高原东部是暖偏差贡献.与SAF项相比, 地表感热项对地表温度偏差的贡献几乎相反, 这大大抵消了SAF项引起的偏差.云辐射强迫项对高原东部的年平均和季节平均弱冷偏差有很大贡献.与高估的水蒸气含量有关的长波辐射项造成了夏秋季整个高原上大部分的暖偏差.该研究表明, 提高FGOALS-f3-L中的陆面和云过程对降低高原上地表温度偏差至关重要.  相似文献   

6.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

7.
The active layer thickness (ALT) in permafrost regions, which affects water and energy exchange, is a key variable for assessing hydrological processes, cold-region engineering, and climate change. In this study, the authors analyzed the variation trends and relative changes of simulated ALTs using the Chinese Academy of Sciences Land Surface Model (CAS-LSM) and the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model, gridpoint version 3 (CAS-FGOALS-g3). Firstly, the simulated ALTs produced by CAS-LSM were shown to be reasonable by comparing them with Circumpolar Active Layer Monitoring observations. Then, the authors simulated the ALTs from 1979 to 2014, and their relative changes across the entire Northern Hemisphere from 2015 to 2100. It is shown that the ALTs have an increasing trend. From 1979 to 2014, the average ALTs and their variation trends over all permafrost regions were 1.08 m and 0.33 cm yr−1, respectively. The relative changes of the ALTs ranged from 1% to 58%, and the average relative change was 10.9%. The variation trends of the ALTs were basically consistent with the variation trends of the 2-m air temperature. By 2100, the relative changes of ALTs are predicted to be 10.3%, 14.6%, 30.1%, and 51%, respectively, under the four considered hypothetical climate scenarios (SSP-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). This study indicates that climate change has a substantial impact on ALTs, and our results can help in understanding the responses of the ALTs of permafrost due to climate change.摘要在气候变化背景下, 活动层厚度的变化会对多年冻土区水文,生态,寒区工程等产生较大的影响.本研究利用中科院气候系统模式CAS-FGOALS-g3和陆面过程模式CAS-LSM 模拟分析了活动层厚度的变化趋势和相对变化.结果表明:活动层厚度整体上呈现出增加的趋势.1979 - 2014年, 多年冻土区活动层厚度的区域平均为1.08 m, 变化趋势为0.33 cm yr−1, 其变化趋势与2 m气温变化趋势基本一致, 相对变化范围为1%-58%, 平均为10.9%.在未来四种不同的气候情景(SSP-2.6,SSP2-4.5,SSP3-7.0和SSP5-8.5)下, 到2100年预计活动层厚度的相对变化分别为10.3%,14.6%,30.1%和51%.  相似文献   

8.
Seasonal snow is sensitive to climate change, and is always taken as a signal of local climate changes. As changes in snow differ locally in their characteristics, it is necessary to detect the effects of snow on different land cover types. The middle and high latitudes of the Northern Hemisphere are located in a vast area of seasonal snow, experiencing snow accumulation and snowmelt stages each year. This study found that selected land cover types (open shrubland, evergreen needleleaf forest, and mixed forest) possess unique relationship curves between the snow cover fraction and snow depth. This has resulted in the northward shrinking of open shrubland and expansion of evergreen needleleaf forest and mixed forest, thereby further modulating local ecological systems. However, such changes in the snow process are not reproduced well by model parameterizations, and a faster melting process in the snowmelt stage will occur owing to the effects of global warming not being properly considered in such parametrization schemes. This inability to properly simulate the change in the snow process will affect the understanding of the ecological impacts of snowmelt in spring.摘要季节性降雪对气候变化很敏感, 常被当作气候变化的信号. 由于其局地特征差异显著, 不同下垫面类型的积雪过程也不尽相同. 北半球中高纬度的典型下垫面 (开阔灌丛, 常绿针叶林和混交林) 在积雪覆盖率和雪深之间有着独特的关系曲线, 这种关系不仅代表了积雪过程和融雪过程的特征变化, 更能用于模式进行积雪预测. 研究发现, 北半球中高纬度的增温改变了积雪参数化关系, 进一步影响了局地能量和水循环, 造成开阔灌丛的北缩和常绿针叶林及混交林的扩张. 然而, 目前模式中的积雪参数化并不能很好地再现全球变暖影响下融雪阶段出现的加速融化过程, 并且进一步影响对春季融雪的生态影响的理解.  相似文献   

9.
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau (TP) as a major factor driving the East Asian summer monsoon (EASM) for its direct influence on the land–sea thermal contrast. Actually, the TP snow increased and decreased after the late 1970s and 1990s, respectively, accompanying the two major interdecadal changes in the EASM. Although studies have explored the possible mechanisms of the EASM interdecadal variations, and change in TP snow is considered as one of the major drivers, few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow. This study reveals a tripole pattern of change, with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s. Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation. The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region. These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation. Therefore, the positive–negative–positive winter precipitation anomalies around the TP are formed. This study improves the previously poor understanding of TP climate variation at interdecadal timescales.摘要在20世纪70年代和90年代末, 伴随着东亚夏季风的两次主要年代际变化, 高原积雪分别显著增加和减少. 尽管很多学者研究了东亚夏季风年代际变化的可能机制, 高原积雪变化也被认为是主要因素之一, 但是关于高原冬季积雪本身发生年代际变化的潜在机制尚鲜有研究. 本文揭示了20世纪90年代末高原及周边冬季降水的三极子变化特征: 高原主体上空主要为降水减少, 其南北两侧区域降水增加. 数值试验结果表明, 热带太平洋海温变化可以通过调节沃克环流和局地哈德莱环流, 对上述三极子降水变化型态产生显著影响.  相似文献   

10.
Spatially and temporally accurate event detection is a precondition for exploring the mechanisms of climate extremes. To achieve this, a classical unsupervised machine learning method, the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering algorithm, was employed in the present study. Furthermore, the authors developed a 3D (longitude–latitude–time) DBSCAN-based workflow for event detection of targeted climate extremes and associated analysis of parameter sensitivity. The authors applied this 3D DBSCAN-based workflow in the detection of the 2022 summertime Yangtze extreme heatwave and drought based on the ERA5 reanalysis dataset. The heatwave and drought were found to have different development and migration patterns. Synoptic-scale heatwave extremes appeared over the northern Pacific Ocean at the end of June, extended southwestwards, and covered almost the entire Yangtze River Basin in mid-August. By contrast, a seasonal-scale drought occurred in mid-July over the continental area adjacent to the Bay of Bengal, moved northeastwards, and occupied the entire Yangtze River Basin in mid-September. Event detection can provide new insight into climate mechanisms while considering patterns of occurrence, development, and migration. In addition, the authors also performed a detailed parameter sensitivity analysis for better understanding of the algorithm application and result uncertainties.摘要极端气候事件的精准识别是机理分析的重要前提. 本研究借助无监督机器学习中经典的DBSCAN密度聚类算法, 发展了在三维 (经度-纬度-时间) 空间内进行目标事件识别和参数敏感性分析的研究方案. 在2022年长江全域高温伏秋旱事件识别中的应用表明, 本次天气尺度极端热浪和季节尺度重旱事件的产生发展, 空间传播模式不同. 天气尺度热浪信号自6月底从北太平洋向西南方向延伸, 直至8月中旬覆盖长江全域; 季节重旱信号于7月中旬从孟加拉湾陆面区域向东北向延伸, 直至9月中旬覆盖长江全域. 同时, 本研究中亦进行了相关参数敏感性的详细分析, 对算法应用, 结果理解亦有帮助.  相似文献   

11.
Previous studies have indicated that the stratospheric quasi-biennial oscillation (QBO) has a global impact on winter weather, but relatively less attention has been paid to its effect in summer. Using ERA5 data, this study reports that the QBO has a significant impact on the tropospheric circulation and surface air temperature (SAT) in the extratropics in Northeast Asia and the North Pacific in early summer. Specifically, a QBO-induced mean meridional circulation prevails from Northeast Asia to the North Pacific in the westerly QBO years, exhibiting westerly anomalies in 20°–35°N and easterly anomalies in 35°–65°N from the lower stratosphere to troposphere. This meridional pattern of zonal wind anomalies can excite positive vorticity and thus lead to anomalous low pressure and cyclonic circulation from Northeast Asia to the North Pacific, which in turn cause northerly wind anomalies and decreased SAT in Northeast Asia in June. Conversely, in the easterly QBO years, the QBO-related circulation and SAT anomalies are generally in an opposite polarity to those in the westerly QBO years. These findings provide new evidence of the impact of the QBO on the extratropical climate, and may benefit the prediction of SAT in Northeast Asia in early summer.摘要本文研究了平流层准两年振荡 (QBO) 对东北亚-北太平洋地区初夏对流层环流和地表气温的影响. 在QBO西风位相年, 东北亚至北太平洋地区存在一支由QBO引发的平均经向环流异常, 该经向环流异常可在东北亚至北太平洋地区激发正涡度, 并形成异常气旋式环流. 气旋左侧出现的异常偏北风导致6月东北亚地表气温下降. QBO东风位相年的结果与西风位相年大致相反. 这些结果为QBO对热带外地区天气,气候的影响提供了新的证据, 并为东北亚初夏地表气温的预测提供了新的线索.  相似文献   

12.
The relationship between variations in the East Asian trough (EAT) intensity and spring extreme precipitation over Southwest China (SWC) during 1961–2020 is investigated. The results indicate that there is an interdecadal increase in the relationship between the EAT and spring extreme precipitation over eastern SWC around the late 1980s. During the latter period, the weak (strong) EAT corresponds to a strong and large-scale anomalous anticyclone (cyclone) over the East Asia–Northwest Pacific region. The EAT-related anomalous southerlies (northerlies) dominate eastern SWC, leading to significant upward (downward) motion and moisture convergence (divergence) over the region, providing favorable (unfavorable) dynamic and moisture conditions for extreme precipitation over eastern SWC. In contrast, during the former period, the EAT-related circulation anomalies are weak and cover a relatively smaller region, which cannot significantly affect the moisture and dynamic conditions over eastern SWC; therefore, the response in extreme precipitation over eastern SWC to EAT is weak over the period. The interdecadal change in the relationship between eastern SWC spring extreme precipitation and the EAT could be related to the interdecadal change in the EAT variability. The large (small) variability of the EAT is associated with significant (insignificant) changes in spring extreme precipitation over eastern SWC during the latter (former) period.摘要本文研究表明东亚大槽强度与中国西南地区东部春季极端降水的关系在20世纪80年代末后显著增强, 这可能与东亚大槽自身变率的年代际变化有关. 在80年代末之后, 东亚大槽的变率显著增强, 其对应的大气环流异常也偏强, 范围偏大, 可以显著影响西南地区东部的水汽和动力条件, 从而引起该地区春季极端降水的显著变化. 而在80年代末之前, 东亚大槽的变率偏弱, 其对应的大气环流异常也偏弱, 范围偏小, 因此不能对西南地区东部春季极端降水的变化产生显著影响.  相似文献   

13.
In early-to-mid November 2021, a pronounced reversal of surface air temperature (SAT) anomalies (SATAs) occurred over East Asia and Central Siberia, with extreme SATAs that reached up to about 10 °C. Such a synoptic-scale reversal of SATAs was characterized by the alternate emergence of the “colder Central Siberia–warmer East Asia” pattern and the “warmer Central Siberia–colder East Asia” pattern in November 2021. Coinciding with the reversals of the meridional dipole SATAs, large-scale atmospheric circulation anomalies experienced reversed changes. The development of the anomalous cyclonic (anticyclonic) flow over East Aisa (Central Siberia) was crucial for the occurrence of the “warmer Central Siberia–colder East Asia” pattern. Moreover, as the leading mode of daily SAT variability in approximately 56% of the Novembers during 1979–2021, the meridional dipole pattern of warmer (colder) anomalies over Central Siberia and colder (warmer) anomalies over East Asia may be one of the dominant modes of November SAT variability over Eurasia on the synoptic scale.摘要2021年11月, 东亚与中西伯利亚经历了相反的冷暖异常转换, 表现为“中西伯利亚偏冷, 东亚偏暖”与“中西伯利亚偏暖, 东亚偏冷”的交替出现. 该偶极型气温异常的天气尺度反转伴随着大尺度大气环流异常的反转. 进一步分析表明, 东亚与中西伯利亚的偶极型气温异常反转是1979–2021年期间11月欧亚气温日变化的主导模态之一(发生概率超过56%).  相似文献   

14.
Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST (from reanalysis data) on the early winter Arctic warming during 1982–2014. Two sets of experiments were designed: in the first set (EXP1), OISSTv2 daily sea-ice concentration and SST variations were used as the lower boundary forcing, while in the second set (EXP2) the SST data were replaced by the daily SST climatology. In the results, the multi-model ensemble mean of EXP1 showed a near-surface (~850 hPa) warming trend of 0.4 °C/10 yr, which was 80% of the warming trend in the reanalysis. The simulated warming trend was robust across the six models, with a magnitude of 0.36–0.50 °C/10 yr. The global SST could explain most of the simulated warming trend in EXP1 in the mid and low troposphere over the Arctic, and accounted for 58% of the simulated near-surface warming. The results also suggest that the upper-tropospheric warming (~200 hPa) over the Arctic in the reanalysis is likely not a forced signal; rather, it is caused by natural climate variability. The source regions that can potentially impact the early winter Arctic warming are explored and the limitations of the study are discussed.摘要本文使用六个不同的最新大气模式进行了协调数值集合实验, 评估和量化了全球海表面温度 (SST) 对1982–2014年冬季早期北极变暖的影响.本研究设计了两组实验:在第一组 (EXP1) 中, 将OISSTv2逐日变化的海冰密集度和SST数据作为下边界强迫场;在第二组 (EXP2) 中, 将逐日变化的SST数据替换为逐日气候态.结果表明: (1) EXP1的多模式集合总体平均值显示0.4 °C/10年的近地表 (约850 hPa) 升温趋势, 为再分析数据结果中升温趋势的80%. (2) 在这六个模式中, 模拟的变暖趋势均很强, 幅度为0.36–0.50 °C/10年. (3) 全球海表温度可以解释北极对流层中低层EXP1的大部分模拟的变暖趋势, 占再分析数据结果的58%. (4) 再分析数据结果中, 北极上空的对流层上层变暖 (约200 hPa) 不是由强迫信号而可能是由自然气候变率引起的.本文还探索了影响北极初冬变暖的可能源区, 并讨论了该研究的局限性.  相似文献   

15.
Southeast China has comparable stratus cloud to that over the oceans, especially in the cold seasons (winter and spring), and this cloud has a substantial impact on energy and hydrological cycles. However, uncertainties remain across datasets and simulation results about the long-term trend in low-cloud cover in Southeast China, making it difficult to understand climate change and related physical processes. In this study, multiple datasets and numerical simulations were applied to show that low-cloud cover in Southeast China has gone through two stages since 1980—specifically, a decline and then a rise, with the turning point around 2008. The regional moisture transport plays a crucial role in low-cloud cover changes in the cold seasons and is mainly affected by the Hadley Cell in winter and the Walker Circulation in spring, respectively. The moisture transport was not well simulated in CMIP6 climate models, leading to poor simulation of the low-cloud cover trend in these models. This study provides insights into further understanding the regional climate changes in Southeast China.摘要中国东南地区在冬春冷季节盛行低云, 对局地能量平衡和水文循环有重要的作用. 本研究使用多套数据和数值模拟结果, 分析这一地区冷季节内低云云量在1980年至2017年的长期变化. 结果表明, 低云云量经历了先下降后上升的趋势变化, 转折点出现在2008年左右. 局地水汽通量输送在影响低云云量的变化中起着至关重要的作用, 其在冬季和春季分别受到哈德莱环流和沃克环流的影响. CMIP6中的气候模式对水汽通量输送的模拟能力欠佳, 影响了对低云云量的模拟结果.  相似文献   

16.
The explosive spread of the 2019 novel coronavirus (COVID-19) provides a unique chance to rethink the relationship between human activity and air pollution. Though related studies have revealed substantial reductions in primary emissions, obvious differences do exist in the responses of secondary pollutants, like ozone (O3) pollution. However, the regional disparities of O3 responses and their causes have still not been fully investigated. To better elucidate the interrelationship between anthropogenic emissions, chemical production, and meteorological conditions, O3 responses caused by lockdowns over different regions were comprehensively explored at a global scale. Observational signals of air-quality change were derived from multi-year surface measurements and satellite retrievals. With similar substantial drops in nitrogen dioxide (NO2), ozone shows rising signals in most areas of both East Asia and Europe, even up to ∼14 ppb, while a non-negligible declining signal exists in North America, by about 2–4 ppb. Furthermore, the drivers behind the different O3 responses are discussed based on meteorological analysis and O3 sensitivity diagnosis. On the one hand, O3 responses to NO2 declines can be affected by the primary dependence on its precursors. On the other hand, it is also highly dependent on meteorological factors, especially temperature. Our study further highlights the great importance of taking into consideration both the regional disparities and synergistic effects of precursor reductions and meteorological influence for scientific mitigation of O3 pollution.摘要疫情期间全球各地一次排放大幅削减, 而臭氧等二次污染的响应则存在着区域间差异.结合地面和卫星观测发现, 同在氮氧化物大幅下降的情况下,臭氧在东亚和欧洲呈现出可达14ppb的上升信号, 而北美则下降为主 (约2–4ppb) .我们结合气象分析和臭氧敏感性进一步讨论了臭氧响应差异性的原因, 一方面受臭氧与前体物间关系的影响;另一方面来自于气象, 尤其是温度.研究明晰了人为排放,化学和气象三者的内在关联, 强调了在臭氧控制过程中考虑前体物削减和气象条件协同的重要性.  相似文献   

17.
This paper investigates the distribution of spatial modes of cloud-to-ground (CG) lightning activity across China's land areas during the period 2010–20 and their possible causes based on the CG lightning dataset of the China National Lightning Detection Network. It is found that the first empirical orthogonal function mode (EOF1) occupies 32.86% of the total variance of the summer CG lightning anomaly variation. Also, it exhibits a negative–positive–negative meridional seesaw pattern from north to south. When the SST of the East Pacific and Indian Ocean warms abnormally and the SST of the Northwest Pacific becomes abnormally cold, a cyclonic circulation is stimulated in the Yellow Sea, East China Sea, and tropical West Pacific region of China. As the water vapor continues to move southwards, it converges with the water vapor deriving from the Bay of Bengal in South China, and ascending motion strengthens here, thus enhancing the CG lightning activity of this area. Affected by the abnormal high pressure, the corresponding CG lightning activities in North China and Northeast China are relatively weak. The ENSO phenomenon is the climate driver for the CG lightning activity occurring in land areas of China.摘要本文利用中国气象局国家雷电监测网 (CNLDN) 的地闪观测数据集, 分析了2010–2020年中国陆地区域地闪空间模态分布特征及其可能的气候成因. 研究发现, 夏季地闪第一模态的方差贡献率为32.86%, 其分布从北到南呈现出“−+−”的经向跷跷板模式. 当东太平洋和印度洋的海温异常增暖, 西北太平洋的海温异常变冷时, 在中国黄海, 东海及热带西太平洋地区激发出气旋性环流. 随着水汽南下至华南地区, 与来自孟加拉湾的水汽汇合, 上升运动在此加强, 从而使得该地区的雷电活动增强. 表明厄尔尼诺-南方涛动 (ENSO) 现象, 是发生在中国陆地区域的地闪活动的气候驱动因子.  相似文献   

18.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

19.
Topography as well as its attributes are fundamental factors during precipitation generation. Various models with different complexity have been established to interpret the topography–precipitation relationship. In this study, the topography–precipitation relationships simulated by two dynamical downscaling models (DDMs) at the kilometer-scale and traditional quarter-degree resolution in eastern China are evaluated by utilizing multi-scale geographically weighted regression with station precipitation observations as reference. The precipitation simulated by the kilometer-scale DDM had a higher agreement with observations than the quarter-degree simulation. For the effects of topography on precipitation, observations revealed a dominant role played by the topographical relief in the precipitation distribution at most stations in the study region. The kilometer-scale DDM generally reflected this dominant role of topographical relief. However, the quarter-degree DDM showed an excessive dependency of the precipitation distribution on the topographical elevation. This research highlights the key role of underground sub-grid variations on the precipitation in eastern China, which implies a potential way forward for precipitation simulation improvements.摘要与传统的1/4度 (≈25-30 km) 动力降尺度模拟相比, 公里尺度模拟的降水空间分布与观测结果更为接近. 为了研究这一差异原因, 本研究以华东地区为例, 探究了地形因子在观测和模拟的降水中的作用. 为了更好地体现地形因子对降水分布非均匀性的影响, 以及不同地形因子作用的尺度差异, 本研究采用多尺度地理加权回归模型, 对五个主要地形因子与公里尺度和1/4度分辨率模拟的降水的关系进行了评估. 基于观测数据的研究结果显示地形起伏度, 地形高程和离海岸线距离对华东地区降水分布的非均匀性都有重要影响, 其中地形起伏度在研究区大部分站点降水分布中起主导作用; 公里尺度模拟结果基本反映了地形起伏度的主导作用; 而1 / 4度模拟结果表现出降水对地形高程的过度依赖. 本研究揭示了公里尺度地形分布对中国东部降水的非均匀分布的关键作用, 研究结果可以为改进降水模拟提供新的思路.  相似文献   

20.
Future variations in precipitation due to the effects of topography and possible trends in land-use change in Central Asia are evaluated by utilizing numerical experiments based on a case study. Considering possible changes in land cover, oasification leads to a 0.23 mm increase in regional-averaged precipitation, accounting for 3.0% of the total. Meanwhile, desertification and urbanization decrease precipitation, by about ?5.3% and ?4.7% proportionally, mainly through changing the near-surface humidity and thermal environment and related upward transport of heat fluxes in the boundary layer. Relatively, varied terrain height produces a more prominent impact on precipitation (up to ?13.1% and ?24.9% in the 1/2 and 1/4 original terrain height runs), mainly via varying the wind field and microphysical processes (low-level jet and cloud). Furthermore, the heavier rainfall happens over the mountains, while the more sensitive response of precipitation to varied topography and land use occurs over the plains. As the main microphysical conversion pathways of the rainwater budget, the greater peaks of PSMLT (snow melting into raindrops) and PGMLT (graupel melting into raindrops) present over the mountains but not the plains are responsible for the difference in precipitation between the mountains and plains. However, the more sensitive response of plain rainfall might be related to the rapid transit of rainfall over the plains but prolonged mountainous precipitation lasting together with relatively slowly varying microphysical conversion processes when airflows climb the mountains. The findings of this study have important strategic significance for improving the environment of ecosystems and strengthening the capacity for disaster prevention.摘要本研究利用数值试验方法, 定量评估了地形效应和土地利用类型的变化对中亚降水事件的影响. 考虑到可能的地表覆盖变化趋势, 绿洲化, 沙漠化和城市化可改变近地表湿热环境和边界层向上热通量, 导致区域平均降水增加3.0%, 减少5.3%和4.7%; 相对而言, 地形效应对降水的影响更为显著 (1/2和1/4原始地形高度时, 降水减少13.1%和24.9%), 主要影响途径是风场和微物理过程 (低空急流和云) 的变化. 以上研究结果对改善生态环境, 加强防灾能力具有重要战略意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号