首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the “andesitic” material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca44Mg46Fe10) and Na plagioclase (Or2.5Ab90.0An7.5 to Or3.5Ab96.1An0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called “crystal mush.” The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or92.7Ab7.2An0.1 to Or87.3Ab11.0An1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca1.3Mg80.5Fe17.8 to Ca3.1Mg78.1Fe18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are present within such K-feldspar regions. Some enrichments of the albite component have been detected at the end of curved elongated nodules of K feldspar intruded into the mafic silicates. The textural relationships suggest that a K-rich melt was present. A K-rich melt is neither the first melt of a chondritic system nor a differentiation product of a Na-rich partial melt of chondritic material. The K-rich material may have originated as a fluid phase that leached K from surrounding materials and segregated by a mechanism similar to that proposed for the Na-rich inclusions.  相似文献   

2.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

3.
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.%) and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88), K-feldspar (Or27–95 Ab5–61), diopside (En34–40Fs11–18Wo46–49), biotite, and Ca-amphibole (edenite) build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC). Evidences such as (1) disequilibrium micro-textures in feldspars, (2) microgranular mafic enclaves (MME) and (3) synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9) with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes) share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved through multiple physical processes like convection, shear flow, crystal accumulation and magma mixing.  相似文献   

4.
The Agacoren Intrusive Suite is exposed as a large intrusive body over ~500 km2 east of Lake Tuz in central Anatolia and consists of the Cokumkaya gabbro, the Agacoren granitoid, and young dikes. The Agacoren granitoid is the predominant lithology of the Agacoren Intrusive Suite, and is differentiated into several subunits ranging in composition from monzonite, through granite, to alkali feldspar granite. The Cokumkaya gabbro occurs as stocks enclosed in the Agacoren granitoid; individual bodies range in size from 10 m × 20 m to 7 km × 3 km. Young dikes cut both the Cokumkaya gabbro and the Agacoren granitoid, and are particularly abundant in the central part of the intrusive body.

Centimeter- to meter-size mafic microgranular enclaves (MME) are enclosed in the Agacoren granitoid. The enclaves are diorite, quartz diorite, and monzodiorite in composition, and represent blobs of mafic magma injected into a felsic host magma. The MME have a mineral assemblage (plagioclase + amphibole + biotite ± quartz ± K-feldspar) almost identical to that of host granitoid, but with different mineral proportions. The characteristic petrographic features of the MME are the presence of acicular apatite, blade-shaped biotite, quartz ocelli, and K-feldspar poikilitically enclosing mafic minerals. Microprobe analyses performed on amphibole and plagioclase reveal similar mineral chemistries for both the MME and the host granitoid. The anorthite contents of the plagioclases show an increase from rim to core in both the MME and the host granitoid. The rims of the MME plagioclase have compositions ranging from An5 to An40, whereas those of the host granitoid vary from An0 to An42. The cores, on the other hand, range from An30 to An90 and An20 to An90 in the MME and the host, respectively. Amphiboles are essentially of ferro-hornblende composition in the MME, and of ferro- to magnesiohornblende composition in the host granitoid. The similarity in mineral compositions reflects chemical equilibrium attained through the magma-mixing process.  相似文献   

5.
顾枫华  章永梅  刘瑞萍  郑硌  孙玄 《岩石学报》2015,31(5):1374-1390
华北地台北缘乌拉山地区的沙德盖钾长花岗岩体中普遍发育以二长岩为主的暗色微粒包体,包体具塑性流变特征,与寄主岩的接触界线或为截然或为渐变过渡。岩相学观察表明,包体中发育多种反映岩浆混合作用的典型组构,如石英眼斑、环斑长石、镁铁质团块、钾长石巨晶的溶蚀、磷灰石的针柱状形貌、长石中的包体带以及钙长石的"针尖"结构等。造岩矿物的电子探针分析表明,岩浆混合在沙德盖岩体的形成中起了重要作用,寄主花岗岩浆主要来自下地壳,而暗色包体岩浆则主要为地幔来源。锆石LA-ICP-MS U-Pb同位素定年结果显示,沙德盖花岗岩及其暗色微粒包体的形成时代基本一致,分别为233.4±2.3Ma和229.7±1.5Ma(中三叠世),进一步佐证了该岩体是岩浆混合作用的产物。研究认为,当铁镁质岩浆与长英质岩浆混合时,早期基性岩浆的快速淬冷形成了边界清楚、具明显冷凝边且暗色矿物含量较高的包体;随着两种不同成分岩浆之间温差的减小以及组分的交换,进一步形成了颜色较浅、边界渐变过渡和无明显冷凝边的包体。  相似文献   

6.
Rocks of the Late Cretaceous Dagbasi Pluton (88-83 Ma), located in the eastern Pontides, include mafic microgranular enclaves (MMEs) ranging from a few centimetres to metres in size, and from ellipsoidal to ovoid in shape. The MMEs are composed of gabbroic diorite, diorite and tonalite, whereas the felsic host rocks comprise mainly tonalite, granodiorite and monzogranite based on both mineralogical and chemical compositions. MMEs are characterized by a fine-grained, equigranular and hypidiomorphic texture. The common texture of felsic host rocks is equigranular and also reveals some special types of microscopic textures, e.g., oscillatory-zoned plagioclase, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures and rounded plagioclase megacrysts in MMEs. Compositions of plagioclases (An33-An60), hornblendes (Mg#=0.77-1.0) and biotites (Mg#=0.61-0.63) of MMEs are slightly distinct or similar to those of host rocks (An12-57; hbl Mg#=0.63-1.0; Bi Mg#=0.50-0.69), which suggest partial to complete equilibration during mafic-felsic magma interactions.The felsic host rocks have SiO2 between 60 and 76 wt% and display low to slightly medium-K tholeiitic to calc-alkaline and peraluminous to slightly metaluminous characteristics. Chondrite-normalized rare-earth element (REE) patterns are fractionated (Lacn/Lucn=1.5-7.3) with pronounced negative Eu anomalies (Eu/Eu*=0.46-1.1). Initial εNd(i) values vary between −3.1 and 1.6, initial 87Sr/86Sr values between 0.7056 and 0.7067.Compared with the host rocks, the MMEs are characterized by relatively high Mg-number of 22-52, low contents of SiO2 (53-63 wt%), low ASI (0.7-1.1) and low to medium-K tholeiitic to calc-alkaline, metaluminous to peraluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn=1.4-3.9; (Tb/Yb)cn=0.9-1.5] and show small negative Eu anomalies (Eu/Eu*=0.63-1.01). Isotope signatures of these rocks (87Sr/86Sr(i)=0.7054-0.7055; εNd(i)=-1.0 to 1.9) are largely similar to the host rocks. Gabbroic diorite enclaves have relatively low contents of SiO2, ASI; high Mg#, CaO, Al2O3, TiO2, P2O5, Sr and Nb concentrations compared to dioritic and tonalitic enclaves.The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, interacted with a crustal melt that originated from dehydration melting of the mafic lower crust at deep crustal levels. The existence of compositional and textural disequilibrium and the nature of chemical and isotopic variation in these rock types indicate that magma mixing/mingling between an evolved mafic and a granitic magma was involved in their genesis. Microgranular enclaves are thus interpreted to be globules of a more mafic magma probably from an enriched lithospheric mantle source. Al-in-amphibole estimates the pluton emplacement at ca. 0.3-3.8 kbar, and therefore, magma mixing and mingling must have occurred at 3.8 kbar or below this level.  相似文献   

7.
Rocks of the Late Cretaceous Tamdere Quartz Monzonite, constituting a part of the Eastern Pontide plutonism, include mafic microgranular enclaves (MMEs) ranging from spheroidal to ellipsoidal in shape, and from a few centimeters to decimeters in size. The MMEs are composed of diorite, monzodiorite and quartz diorite, whereas the felsic host rocks comprise mainly quartz monzonite, granodiorite and rarely monzogranite on the basis of both mineralogical and chemical compositions. The common texture of felsic host rocks is equigranular. MMEs are characterized by a microgranular texture and also reveal some special types of microscopic textures, e.g. antirapakivi, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures.

The distribution of major, trace and RE elements apparently reflect exchange between the MMEs and the felsic host rocks mainly due to thermal, mechanical and chemical interactions between coeval felsic host magma and mafic magma. The most evident major element transfer from felsic host magma to mafic magma blob is that of alkalis such as Na and K. LILEs such as Rb, Sr, Ba and some HFSEs such as Nb, Y, Zr and Th have been migrated from felsic host magma to MMEs. Apart from these major and trace elements, the other element transfer from felsic host magma to mafic one concerns REE contents. Such a transfer of REEs has evidently increased the LREE contents of MMEs. Enrichments in alkalis, LILEs, HFSEs and REEs could have been achieved by diffusional processes during the solidification of magma sources. The felsic and mafic magma sources behave as Newtonian and visco-plastic materials. In such an interaction, small MMEs behave as a closed system due to immediate rapid cooling, whereas the bigger MMEs suffer greater diffusion from the Newtonian felsic host magma due to slow cooling.  相似文献   


8.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   

9.
Calc-alkaline, metaluminous granitoids in the north of Jonnagiri schist belt (JSB) are associated with abundant mafic rocks as enclave. The enclaves represent xenoliths of the basement, mafic magmatic enclaves (MME) and synplutonic mafic dykes. The MME are mostly ellipsoidal and cuspate shape having lobate margin and diffuse contact with the host granitoids. Sharp and crenulated contacts between isolated MME and host granitoids are infrequent. The MME are fine-grained, slightly dark and enriched in mafic minerals compare to the host granitoids. MME exhibits evidences of physical interaction (mingling) at outcrop scale and restricted hybridization at crystal scale of mafic and felsic magmas. The textures like quartz ocelli, sphene (titanite) ocelli, acicular apatite inclusion zone in feldspars and K-feldspar megacrysts in MME, megacrysts across the contact of MME and host and mafic clots constitute textural assemblages suggestive of magma mingling and mixing recorded in the granitoids of the study area. The quartz ocelli are most likely xenocrysts introduced from the felsic magma. Fast cooling of mafic magma resulted in the growth of prismatic apatite and heterogeneous nucleation of titanite over hornblende in MME. Chemical transfer from felsic magma to MME forming magma envisage enrichment of silica, alkalis and P in MME. The MME show low positive Eu anomalies whereas hybrid and host granitoids display moderate negative Eu-anomalies. Synplutonic mafic dyke injected at late stage of crystallising host felsic magma, display back veining and necking along its length. The variable shape, dimensions, texture and composition of MME, probably are controlled by the evolving nature and kinematics of interacting magmas.  相似文献   

10.
A high-alumina tholeiitic andesite from the southern portion of the Tweed Shield Volcano in northeastern New South Wales contains abundant megacrysts of plagioclase (Ab50An46Or4) and megacrysts of aluminian bronzite (Ca4Mg71Fe25) and relatively Ca-poor aluminian augite (Ca36Mg41Fe20). The pyroxenes commonly occur as inclusions in the plagioclase megacrysts. Electron probe microanalyses of the pyroxene megacrysts indicate that they differ in character and composition from the groundmass ferromagnesian phases, namely a more Al- and Na-poor augite (Ca41Mg42Fe17) and olivine (Fa53). The bulk composition of the plagioclase megacrysts is slightly more Ab-rich than that of the groundmass plagioclase, but differences in the two compositions are extended by microanalyses of groundmass plagioclases. Evaluation of the megacryst compositions in the light of experimental data and analogous occurrences in alkaline volcanics leads to the interpretation that the megacrysts represent cognate precipitates formed at pressures broadly equivalent to the crust-mantle boundary. More important, they provide strong evidence for the high pressure origin of tholeiitic andesites, customarily interpreted as the products of low pressure fractional crystallization of tholeiitic magma.  相似文献   

11.
河北武安坦岭多斑斜长斑岩的成因:冻结岩浆房活化机制   总被引:5,自引:3,他引:2  
流变学实验表明,当岩浆中晶体体积分数达到约50vol%时,岩浆体实际上处于冻结状态,不再具有整体迁移的能力。但在自然界中仍存在含大量斑晶的浅成火成岩和火山岩。因此,富晶体岩浆的上升过程和侵位机制是近年来地球科学领域关注的热点之一。目前,冻结岩浆房的活化机制主要有二种:升温活化机制和流体活化机制。河北武安坦岭地区新发现的多斑斜长斑岩为揭示冻结岩浆房的活化提供了契机。野外观察和晶体粒度分布(CSD)分析表明,坦岭斜长斑岩中斜长石斑晶高达70vol%,基质为显微晶质结构。斜长石斑晶粒径分布均一,大小约为3.1×1.7mm;显微镜观察和背散射图像揭示,斜长石斑晶具环带结构,由宽广的斜长石核部+宽度可变的条纹长石边部组成,且无熔蚀现象;电子探针成分剖面分析表明,斑晶核部成分为更长石(An_(27)Ab_(71)Or_2),幔部为更长石(An_(13)Ab_(83)Or_4),边部为条纹长石。边部条纹长石的成分有一定变化,从内侧到外侧,主晶钠长石成分由Ab_(53)Or_(47)变为Ab_(99)Or_1,客晶钾长石成分由Ab_(48)Or_(51)变为Ab3Or97。斑晶斜长石核部存在细长条状或斑点状钾长石,且越靠近中心,钾长石斑点的数量越少。这些特点表明,边部条纹长石为交代成因。稀土和微量元素分析则显示,边部条纹长石具弱正Eu异常,相对富集LREE和K、Rb、Ba、Sr等大离子亲石元素,亏损Th、Zr、Nb的特点。CSD相关图解及以上特征表明,斜长石斑晶形成于稳定,封闭的结晶环境,并受到晚期碱交代作用的改造。基质主要由微粒钙质角闪石,条纹长石,石英,钾长石和钠长石组成,含少量自形-半自形磁铁矿和钛铁矿、磷灰石、榍石、金红石和锆石等11种矿物组成。11种矿物相和结构特征暗示基质形成于极端不稳定的结晶环境,与斜长石斑晶形成条件鲜明对照。根据基质的矿物组成,推测形成基质的岩浆具有富含K、Na、Fe、Si和挥发分的特征。这种特征与上述关于条纹长石环边形成条件的判断一致。据此,本文认为:产生斜长石斑晶的岩浆曾经在地壳深部作过长时间滞留,导致了斜长石的稳定结晶,增加了岩浆的粘度和密度,使岩浆处于冻结状态;富碱高铁熔体-流体流的注入大幅降低了岩浆的总粘度,并提高了岩浆的浮力,从而促使冻结岩浆房迅速活化和上升侵位;同时,富碱高铁熔体-流体流强烈交代了先存的斜长石斑晶,使其边部形成条纹长石;这种熔体-流体流则在快速排气,冷却过程中迅速结晶,形成了具有不平衡矿物组合的显微晶质基质。在岩浆侵入体较深部位,富碱高铁熔体-流体经历了很缓慢的固结过程,而相分离产生的流体有可能萃取携带岩浆中的铁质,形成富Fe流体流,后者可能对区内"铁矿浆"型铁矿的形成具有重要的贡献。  相似文献   

12.
Palaeoproterozoic (ca 2,480 Ma) felsic magmatism of Malanjkhand region of central Indian Precambrian shield, referred to as Malanjkhand granitoids (MG), contain xenoliths of country rocks and mesocratic to melanocratic, fine-grained porphyritic microgranular enclaves (ME). The shape of ME is spheroidal, ellipsoidal, discoidal, elongated, and lenticular, varying in size from a few centimeters to about 2 m across. The contact of ME with the host MG is commonly sharp, crenulate, and occasionally diffuse, which we attribute to the undercooling and disaggregation of ME globules within the cooler host MG. The ME as well as MG show hypidiomorphic texture with common mineral Hbl-Bt-Kfs-Pl-Qtz assemblage, but differ in modal proportions. The variation in minerals' composition, presence of apatite needles, elongated biotites, resorbed plagiclase, ocellar quartz, and other mafic–felsic xenocrysts strongly oppose the restite and cognate origins of ME. Compositions of plagioclases (An3–An29), amphiboles (Mg/Mg+Fe2+=0.55–0.69), and biotites (Mg/Mg+Fe2+=0.46–0.60) of ME are slightly distinct or similar to those of MG, which suggest partial to complete equilibration during mafic–felsic magma interactions. Al-in-amphibole estimates the MG pluton emplacement at ca 3.4 ± 0.5 kbar, and therefore, magma mixing and mingling must have occurred at or below this level. The substitution in biotites of ME and MG largely suggests subduction-related, calc–alkaline metaluminous (I-type) nature of felsic melts. Most major and trace elements against SiO2 produce near linear variation trends for ME and MG, probably generated by the mixing of mafic and felsic magmas in various proportions. Trace including rare earth elements patterns of ME–MG pairs, however, show partial to complete equilibration, most likely governed by different degrees of elemental diffusion. The available evidence supports the model of ME origin that coeval mafic (enclave) and felsic (MG) magmas produced a hybrid (ME) magma layer, which injected into cooler, partly crystalline MG, and dispersed, mingled, and undercooled as ME globules in a convectively dynamic magma chamber.  相似文献   

13.
 The extremely young (2.5 Ma) I-type Eldzhurtinskiy granite complex (Central Caucasus) is uniform with respect to modal composition, major and trace element chemistries of bulk rocks and mineral phases. In contrast, it reveals two types of alkali feldspar megacrysts differing in tetrahedral Al-content (2t1) and exsolution microtextures: 1. Alkali feldspar megacrysts (Or70An2Ab28) from the top of the body consist of ideally coherent intergrowths of fine-scale regular Or- and Ab-rich lamellae. The exsolved K-feldspar host is monoclinic (2t1=0.7), the exsolved Na-rich phase consists of Albite- and/or Pericline-twinned albite. 2. Megacrysts from greater depths have the same bulk composition, but the exsolved Ab-rich phase occurs in the form of optically visible, broad lamellae and patches of low albite. In addition, the K-rich host yields a higher degree of (Al, Si) ordering (2t1=0.8). The evolution of the distinct types of megacrysts reflects differences in the cooling history within the upper and lower part of the granite body. The occurrence of the coherent lamellae in the megacrysts from the top of the body is attributed to exsolution under dry conditions during fast cooling, whereas coarsening of lamellae and formation of albite patches in the megacrysts from the lower part are caused by fluid-feldspar interaction. The transition zone in the body between the two types of megacrysts is sharp (in a depth interval of 100–200 m) and not related to shear zones. Received: 12 June 1995 / Accepted: 29 January 1996  相似文献   

14.
How late are K-feldspar megacrysts in granites?   总被引:1,自引:0,他引:1  
R.H. Vernon  S.R. Paterson 《Lithos》2008,104(1-4):327-336
Various petrologists have suggested that K-feldspar megacrysts grow in granites that are extensively crystallized, even at subsolidus conditions. However, experimental evidence indicates that, though K-feldspar nucleates relatively late in the crystallization history, abundant liquid is available for development of large crystals. A great deal of evidence, involving many different factors, favours a magmatic/phenocrystic origin for K-feldspar megacrysts in granites, namely simple twinning, oscillatory zoning, euhedral plagioclase inclusions, and concentric, crystallographically controlled arrangements of inclusions. In addition, abundant evidence has been presented of (1) mechanical accumulation of K-feldspar megacrysts in granites, (2) alignment of megacrysts and megacryst concentrations in magmatic flow foliations, (3) involvement of megacrysts in zones of magma mixing in granite plutons, and (4) occurrence of megacrysts in some volcanic rocks, implying that the megacrysts were suspended in enough liquid to be moved without fracturing or plastic deformation. Detailed trace element and isotopic data also indicate that megacrysts can move between coexisting felsic and more mafic magmas. Irregular overgrowths on megacrysts are consistent with continued magmatic growth after euhedral megacrystic growth ceased, the overgrowths being impeded by simultaneously crystallizing quartz and feldspar grains.  相似文献   

15.
The present study deals with geochemical characteristics and petrogenesis of three younger granite varieties (coarse-grained biotite-muscovite granites (CBG), garnetiferous muscovite granites (GMG) and Abu Aggag biotite granites (AAG)) in El-Hudi area, east of Aswan, southeastern desert of Egypt. Mineral chemistry and whole rock chemistry data revealed that all granites have high SiO2 (70.8-74.7 wt.%), Al2O3 (12.8-14.3 wt.%), Na2O and K2O (>3.2 wt.%) contents with high Na2O/K2O ratios (~>1). Plagioclase feldspars range in composition from albite to oligoclase (An9-27) in CBG, oligoclase (An13-18) in GMG and albite (An2-6) in AAG. Potash feldspars are mainly perthitic microcline and exhibit chemical formulae as (Or93-96 Ab7-4 An0) in CBG, (Or95-98 Ab5-2 An0) in GMG and (Or82-98 Ab18-2 An0) in AAG. Biotites from CBG and GMG are enriched in (Mg and Ti) and depleted in (Al, Fe, Mn and K) compared with those of AAG. Biotites from CBG and GMG had been derived from calc-alkaline magma, whereas those from AAG had been derived from peraluminous magma. Chlorites from CBG and GMG are Mg-Fe bearing, while that from AAG is Fe-rich chlorite (chamosite). The CBG and GMG are Mg-rich monzogranites originated from high-K calc-alkaline magma with metaluminous to mildly peraluminous nature. The AAG are Fe-rich monzogranites to syenogranites generated from high-K calc-alkaline peraluminous magma. Both CBG and GMG are late- to post-orogenic granites, while the AAG are post-orogenic granites. All three granite varieties are considered as evolved I-type granites, formed under low to moderate water pressures (~ 0.5-7 kbars) and relatively high ranges of crystallization temperatures (~700-890°C). They were generated from partial melting of crustal materials at lower (CBG >30 km depth) and intermediate (GMG & AAG ~20-30 km depth) levels. The crystal fractionation was the predominant process during differentiation of parent magmas of these granites. Geochemical characteristics manifest that AAG represent the highly fractionated member of magma cycle differs from that produced CBG and GMG. The CBG are relatively enriched in both U and Th existing only within the accessory minerals such as zircon, sphene, and allanite.  相似文献   

16.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

17.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

18.
An analcimite sill, which intrudes Carboniferous sedimentary rocks northwest of the township of Barraba in northeastern New South Wales, is exceedingly rich in ultramafic and mafic inclusions and also contains a varied megacryst assemblage. The majority of inclusions belong to an ultramafic-mafic granulite suite whose members generally contain a Cr-poor green spinel. Layering is preserved in many inclusions and their textures are appropriate to those arising from recrystallization at subsolidus temperatures. Ultramafic granulites of the Al-spinel suite are mainly pyroxenites, with rarer lherzolites, and mafic granulites usually consist of the assemblage plagioclasea-luminous pyroxenes-spinel. Ca-rich tschermakitic clinopyroxenes and coexisting aluminous Ca-poor orthopyroxenes define a trend of moderate iron enrichment. Spinels also display significant Fe2+ → Mg substitution. Plagioclase in some plagioclase-bearing pyroxenites and mafic granulites contains numerous rod-like inclusions of spinel, compositionally similar to the discrete spinels unassociated with plagioclase. The formation of spinel in plagioclase is believed to have resulted largely from the migration of (Mg, Fe2+) to Al-rich nucleation sites in the feldspar. Other inclusion types include Cr-spinel lherzolites —more Fe-rich than Cr-diopside lherzolite inclusions in alkaline volcanics — and rare wehrlite heteradcumulates, probably cognate with the host analcimite. The megacryst assemblage is dominated by anorthoclase megacrysts, which are accompanied, in order of decreasing abundance, by megacrysts of tschermakitic clinopyroxene, titanbiotite, kaersutite, and aluminous titanomagnetite. The Al-spinel mafic granulites have low Ti, K and P contents and their petrochemical affinities are high-alumina mafic alkaline to transitional. They compare closely in major and minor element chemistry with some ocean ridge basalts. The Al-spinel ultramafic-mafic inclusions suite is interpreted as the remnants of a layered ultramafic-mafic “pluton ” which initially crystallized at pressures in the vicinity of 10 kb and subsequently re-equilibrated at subsolidus temperatures (ca 950° C) and comparable pressures. The parent magma was K-poor, ol-normative subalkaline and its fractionation at moderate pressures, controlled mainly by olivine and subcalcic clinopyroxene, resulted in decreases in the derivative liquids in their saturation levels and ol contents, and increases in Al and Ca. These trends are reflected in the compositions of the mafic granulites. The pressure regime of megacryst formation apparently was greater than 10–12 kb i.e. the megacrysts precipitated before acquisition of xenoliths of the Al-spinel granulite suite by the analcimite host. Anorthoclase fractionation produced only limited compositional changes in the original alkali basaltic melt.  相似文献   

19.
ABSTRACT

Mashhad granitoids and associated mafic microgranular enclaves (MMEs), in NE Iran record late early Mesozoic magmatism, was related to the Palaeo-Tethys closure and Iran-Eurasia collision. These represent ideal rocks to explore magmatic processes associated with Late Triassic closure of the Palaeo-Tethyan ocean and post-collisional magmatism. In this study, new geochronological data, whole-rock geochemistry, and Sr–Nd isotope data are presented for Mashhad granitoids and MMEs. LA–ICP–MS U–Pb dating of zircon yields crystallization ages of 205.0 ± 1.3 Ma for the MMEs, indicating their formation during the Late Triassic. This age is similar to the host granitoids. Our results including the major and trace elements discrimination diagrams, in combination with field and petrographic observations (such as ellipsoidal MMEs with feldspar megacrysts, disequilibrium textures of plagioclase), as well as mineral chemistry, suggest that MMEs formed by mixing of mafic and felsic magmas. The host granodiorite is a felsic, high K calc-alkaline I-type granitoid, with SiO2 = 67.5–69.4 wt%, high K2O (2.4–4.2 wt%), and low Mg# (42.5–50.5). Normalized abundances of LREEs and LILEs are enriched relative to HREEs and HFSEs (e.g. Nb, Ti). Negative values of whole-rock εNd(t) (?3 to ?2.3) from granitoids indicate that the precursor magma was generated by partial melting of enriched lithospheric mantle with some contributions from old lower continental crust. In the MMEs, SiO2 (53.4–58.2 wt%) is lower and Ni (3.9–49.7 ppm), Cr (0.8–93.9 ppm), Mg# (42.81–62.84), and εNd(t) (?2.3 to +1.4) are higher than those in the host granodiorite, suggesting a greater contribution of mantle-derived mafic melts in the genesis of MMEs.  相似文献   

20.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号