首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
层状盐岩体三维Cosserat介质扩展本构模型的程序实现   总被引:3,自引:1,他引:2  
尹雪英  杨春和  李银平 《岩土力学》2007,28(7):1415-1420
对层状盐岩体内的油(气)储存硐室进行稳定性计算时,如何选用恰当的本构模型来反映层状盐岩体的特点是至关重要的。针对我国大多数盐矿为多层盐岩的地质构造特征,基于宏观平均意义下的考虑细观弯曲效应的三维Cosserat介质扩展本构模型,结合FLAC3D软件的主要计算思路,使用VC++平台开发了该模型的FLAC3D接口程序,并编译成动态链接库DLL文件。经算例验证,该程序的计算结果可靠,不仅可以考虑不同力学特性的岩层先后破坏引起复合体单元的渐进损伤破坏,而且引入了夹层体积含量等统计参数后可大大节省单元网格数量,为大型层状岩体内的地下硐室稳定性数值模拟计算奠定了基础。  相似文献   

2.
尹雪英  杨春和  李银平 《岩土力学》2006,27(Z1):344-348
针对盐矿常为不同岩层交替而成的互层盐岩体的基本特点,利用宏观平均意义下考虑细观弯曲效应的三维Cosserat介质扩展本构模型的FLAC3D接口程序,对湖北云应地区的ZK1075,ZK1083,ZK1099溶腔进行了计算,不仅考虑了刚度异于盐岩的泥岩对复合体弹性特征的影响,并且考虑了由于各层内部位移协调引起泥岩夹层先行破损,进而引起复合体变形和破坏。计算结果表明,云应地区的层状盐岩体中的刚度、强度较大的泥岩夹层对层状盐岩复合体具有强化作用,对盐岩溶腔造腔后的稳定性有利。  相似文献   

3.
层状盐岩蠕变变形相互作用研究   总被引:2,自引:1,他引:1  
王安明  李小根  杨春和  黄志全 《岩土力学》2010,31(12):3964-3969
考虑泥岩夹层和盐岩的弹性性质和稳态蠕变性质,通过数值试验方法计算层状复合盐岩体在单轴和低围压三轴荷载作用下蠕变变形过程中力学相互作用和变形时效规律,分析泥岩夹层和盐岩层因蠕变率不匹配对层状盐岩蠕变的影响,初步讨论了层状复合岩体的复合材料研究方法。结果表明,层状盐岩中泥岩夹层与盐岩因弹性参数不匹配产生的初始应力集中在蠕变过程中发生松弛,因泥岩夹层与盐岩层蠕变率不匹配导致两者之间应力重分布,泥岩夹层对盐岩层的蠕变有明显抑制作用。这些分析体现了层状盐岩蠕变过程的非线性性质,为建立层状盐岩体合理本构模型奠定了基础。  相似文献   

4.
层状盐岩力学和变形特性数值试验研究   总被引:7,自引:0,他引:7  
王安明  杨春和  黄诚  李银平 《岩土力学》2009,30(7):2173-2178
对含泥岩夹层层状盐岩力学和变形特性进行有限元分析。首先,用数值试验方法预测含泥岩夹层层状盐岩体宏观等效弹性力学参数,然后,建立层状盐岩复合体细观有限元模型,研究其在单轴和三轴压缩荷载下盐岩、泥岩以及界面细观应力应变场分布特征、应力集中问题,并将上述研究与已有的理论和试验成果进行对比。结果表明,运用细观有限元方法预测层状盐岩宏观弹性力学参数是一种直观有效的方法;泥岩和盐岩力学特性上的不匹配导致在层状盐岩的泥岩夹层中以及界面边缘处存在较为明显的应力集中和差异变形。单轴压缩时,泥岩体由于侧向变形能力差会受到横向拉伸应力作用而盐岩层则相应的受到横向压应力作用,三轴压缩时因围压和偏应力大小不同层状盐岩细观应力应变场分布特征则更为复杂;此方法能更为直观的分析层状盐岩的变形和破损特征,这一分析结果对进一步进行层状盐岩体内油(气)储库硐室稳定性分析提供了理论基础。  相似文献   

5.
采用一般有限元对互层岩体进行数值分析研究时,要求的单元数量多、建模工作量大;并且难以反映层状岩体的弯曲变形特性。针对这种岩体Cosserat介质模型是一种很有用的有限元等效模型。首先对基于平面应变问题的Cosserat介质理论及扩展模型简略介绍,然后导出了模型的Mohr-Coulomb塑性屈服条件。再利用Matlab平台编制有限元程序,并对地下洞室工程进行数值模拟。将所得结果与传统连续介质法的结果进行对比。结果表明,基于Matlab的Cosserat有限元程序的有效性及解决互层岩体这类问题的适用性与优越性。  相似文献   

6.
盐岩储气库蠕变损伤分析   总被引:9,自引:1,他引:8  
陈锋  杨春和  白世伟 《岩土力学》2006,27(6):945-949
通过对盐岩本构关系的实验研究,对Norton Power 盐岩蠕变本构模型引入损伤变量,在损伤等效应力中引入考虑偏应力和围压影响的函数,建立了一种能反映盐岩蠕变和加速蠕变的本构模型。通过对某盐矿盐岩实验数据进行拟合,获得了本构模型的参数,理论曲线与实验曲线吻合得较好。通过三维数值模拟方法,应用该本构模型对某盐矿天然气储存库进行了数值模拟研究,探讨了该盐矿盐岩储气库最低内压工况下,腔周损伤区的扩展、变形规律及最长持续运行时间。研究结果表明:(1)盐岩本构模型在盐岩加速蠕变期具有较好的数值稳定性;(2)在最低运行压力下,腔周盐岩进入加速蠕变期后,储气库损伤区的扩展速度非常快,储气库最危险部位位于腔体顶部;(3)腔周盐岩进行加速蠕变期后,盐岩的腔体体积收敛变形主要表现为损伤蠕变体积收敛,稳态蠕变体积收敛趋于稳定;(4)该盐矿盐岩储气库在该压力下最长持续运行时间约为3个月。  相似文献   

7.
刘俊  黄铭  葛修润 《岩土力学》2004,25(Z2):27-31
由于考虑了内在尺度的影响,Cosserat介质理论较传统连续介质力学更精确和一般化,在考虑具有微结构介质的力学行为时拥有优势.节理岩体的力学性质明显受结构面影响控制,传统连续介质理论对于认识结构应力、应变的真实状况是有限度的.Cosserat理论应用于岩土介质模拟时,根据具体情况有三种方式一种是将岩土介质视为粒状材料,第二种则是将节理岩体看作是层状材料,此种模型应用最为常见;另一种则是将高度节理化岩体看作是块体结构.与试验或其它数值计算的对比表明,采用层状和块状模型对节理岩体进行数值模拟得到的分析成果是合理可信的.空间模型的应用也作了讨论.  相似文献   

8.
层状岩体巷道弯曲变形的有限元模拟   总被引:3,自引:3,他引:0  
王启耀  蒋臻蔚  杨林德 《岩土力学》2006,27(7):1101-1104
在缓倾斜或水平层状岩体中开挖巷道时巷道顶底板弯曲变形和破坏的问题十分突出,巷道往往因这些部位发生过大变形而率先破坏,导致结构的整体失稳。根据层状岩体的特点,分析了其弯曲变形破坏的机理和条件,利用考虑偶应力的Cosserat介质理论,基于Matlab平台编制了相应的计算程序,对水平层状岩体巷道的变形特征及影响因素进行了模拟研究,结果表明Cosserat理论对层状岩体巷道的开挖模拟是适用的,而且简便。  相似文献   

9.
鉴于盐岩地下储库界面对储气(油)库稳定性和密闭性的重要影响,分别从细观和宏观方面对其变形与破损特性开展研究。细观方面:开展含界面盐岩的电镜扫描试验,分析表明:盐岩与夹层界面处颗粒结合紧密、相互嵌合,胶结良好,为储库密闭性提供有利条件。宏观方面:基于复合岩体理论构建层状盐岩交接界面的应力表达式,进而分析界面的变形及破损特性。分析表明,界面附近应力状态极为复杂,硬夹层对盐岩体具有约束锚固作用,且界面处易产生应力集中,进而诱发储库围岩体裂纹扩展直至破坏。综合细观、宏观分析表明,裂纹起裂机制和渗透通道形成是界面的细观结构特性及其应力状态共同影响的结果。研究成果为进一步分析地下盐岩储库的稳定性和密闭性提供一定参考。  相似文献   

10.
一种交互层状岩体模型材料制备方法及初步试验研究   总被引:1,自引:0,他引:1  
我国的盐岩层具有盐层薄、夹层多等特点,相对于大型能源地下储备库而言,层状盐岩围岩可视为交互层状介质,其工程力学特性研究是储备库稳定性评价的基础。因此,制备层状岩体模型材料并开展层状盐岩物理模拟试验是非常必要的。为此研发了一种厚度比及各岩层力学特性可调的交互层状岩体模型材料制备方法:首先设计一种薄层切割装置,对预制好的两种力学特性迥异的均质模型材料块体进行切片,再利用一种模型材料软薄层吸附平移装置将得到的两类薄层交互叠加,经过修葺、预压和养护,获得交互层状模型材料块体,最后钻孔取样获取具有不同倾角和厚度比的交互层状岩体模型材料试样。初步试验研究了厚度比、倾角等对交互层状岩体力学特性的影响,结果表明,通过该方法获得的模型材料可以较好的模拟层状岩体特性,为系统开展层状盐岩体物理模拟试验打下良好基础。  相似文献   

11.
Salt rocks are commonly used as geologic host rocks for storage of gas and crude oil, and are being considered for the disposal of radioactive waste. Different from the salt rock domes in many countries, the salt rock formations in China are usually laminar with many alternating layers, i.e. rock salt, anhydrite, and/or mudstone. Considering the unique stratigraphic characteristics of these salt rocks, a new Cosserat-like medium constitutive model is proposed in order to facilitate efficient modeling of the mechanical behavior of these formations. In this model, a new representative volume element, containing two different layers, is employed to simulate the compatibility of the meso-displacement between two different layers and also the bending effect. A new method for the deformation and failure analysis of bedded salt rocks is derived therefrom. Having the macro-average stresses, the conventional stresses in the different layers can be obtained in sequence. The conventional stresses can then be utilized in a routine way for the strength and failure analysis. For the initial numerical modeling, the new Cosserat-like medium is reduced to a transversely isotropic one. The simplified constitutive model for layered media is then implemented into FLAC3D codes. A test sample validates that the results by using the numerical model are in good agreement with that by using the built-in model, and the mesh size for the new model is reduced greatly. Finally, an application for the stability of oil storage caverns in deep thinly bedded salt rocks is carried out. The effects on convergence of storage caverns and on the failure of surrounding rock due to the presence of the mudstone interlayers (hard phase) are discussed in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
地下盐岩溶腔是CO2封存的有效地质体,CO2沿盐岩软弱夹层和盐层-夹层交界面泄漏是制约地下盐岩溶腔CO2安全封存的关键。以苏北盆地金坛地区CO2盐穴储气库为研究对象,建立了层状盐穴储气库CO2封存的流-固耦合数学模型,分析了盐岩及泥岩夹层中CO2运移泄漏规律及其对CO2安全封存的影响,并探讨了盐岩及泥岩夹层渗透率的动态响应特征。结果表明:渗透率是决定盐岩层中CO2运移速率和泄漏范围的关键,在其影响下,相同封存时间内泥岩夹层中CO2运移速率和影响范围远大于盐岩,但随封存时间延长,盐岩和泥岩夹层中CO2运移速率和压力增幅均呈降低趋势,并随着CO2压力传播至模拟边界而趋于稳定。渗透率动态变化是上覆地层压力负效应与盐岩层中CO2压力正效应共同作用的结果,并受盐岩和泥岩夹层力学性质的影响。CO2封存时间<3 ...  相似文献   

13.
地下盐穴储气库安全性是蓄气运行的关键地质问题.针对平顶山盐田盐层薄、夹层多以及埋藏深等特征,从薄层状盐岩的渗透性、流变性以及稳定性3个方面,详细讨论了储气库的地质可储性及地面沉降问题.首先采集了纯盐岩、互层状盐岩、泥岩夹层3种岩石试样,分别进行了电镜扫描和不同应力水平下的三轴压缩蠕变试验,并应用CYT法对试验区进行了深部盐岩溶腔的探测.鉴于试验区多个采井影响区的重叠,地面沉降量实际监测结果比较复杂,绝对值偏小但具有波动性.综合上述地质特征,作出了平顶山地下盐穴储气库地质条件良好的结论,为我国同类工程提供一定的实际参考.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号