首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Onshore and offshore seismic and geologic-morphologic evidence from the wider region of the ?anakkale Basin indicates that this area has been widely exposed to transpressional tectonism, which already commenced in the Pliocene. During this transpressional tectonism, the Gelibolu Fault and the Anafartalar Shear Zone on the Gelibolu Peninsula, as well as the Bozcaada-Biga Shear Zone on the Biga Peninsula were activated. As a consequence, the northern part of the Gelibolu Peninsula, and a broad zone between Bozcaada Island and the Karaburun Peninsula were uplifted to form the northern and southern boundaries of the ?anakkale Basin, respectively. This remained a low-elevation intermontane basin between these two highlands. The original morphology of the ?anakkale Basin may have developed as a coastal and shelf section of the large extensional Marmara Sea Basin at the end of the Late Miocene. This tectonic phase was followed in the Pliocene by the transpressional tectonism of the North Anatolian Fault Zone, which destroyed the initial morphology and formed the present V-shaped basin. The activity of the Gelibolu Fault and the Anafartalar Shear Zone along the northern boundary of the ?anakkale Basin ended in the late Pleistocene with the initiation of the northern segment of the North Anatolian Fault Zone. The tectonism along the northern boundary of the ?anakkale Basin thus shifted from a transpressional to a transtensional regime. Seismic data indicate that the Bozcaada-Biga Shear Zone continues to be active to the present day.  相似文献   

2.
The North Anatolian Fault crosses the Sea of Marmara from east to west. Tectonic features of the Sea of Marmara were studied using multi-channel deep seismic reflection data. The northern branch of the North Anatolian Fault is active as a right lateral strike-slip fault zone and indicates both negative and positive flower structures. The North Anatolian Fault splays into two faults at the Sea of Marmara as a northern branch and north segment of the southern branch. The northern branch named the Main Marmara Fault extends in a complicated manner from the north of the Kapıdağı Peninsula to westward in the Sea of Marmara. The north segment of southern branch extends between the Gemlik and Bandırma gulfs in the south of the Sea of Marmara. In addition, uplift areas arose by compression and a push-up style in between the Kapıdağı Peninsula and the Main Marmara Fault. The North Anatolian Fault is characterized by a negative flower structure in basins and push-up style in uplift areas in the Sea of Marmara. An uplift area arose between the north segment of the southern branch and the northern branch of the North Anatolian Fault. The north segment of the southern branch of the North Anatolian Fault is a strike-slip fault and displays a pull-apart style in the seismic reflection data.  相似文献   

3.
Multichannel seismic reflection and multi-beam bathymetry data were used to study the active tectonic and syn-tectonic stratigraphic setting of the Gulf of ?zmit in the Marmara Sea (Turkey). The gulf and its near surroundings are deformed by the northern strand of the dextral North Anatolian Fault. Three connected basins of the gulf, the western (Dar?ca), central (Karamürsel) and eastern (Gölcük) basins are formed by active faults, as observed in the stacked and migrated seismic sections, as well as the bathymetry map. The main branch and its surrounding sedimentary strata are confined by normal faults to the north and south. These normal faults converge at depth towards the main fault, forming a negative flower structure in the gulf. The average maximum sedimentation rate is 0.4 mm/year according to the three most recent seismo-stratigraphic units that are located to the south of the main fault branch within the central basin. A 20° south-dipping major discontinuity along the northern shoreline of the gulf represents the top of Paleozoic basement.  相似文献   

4.
Structural, mass-wasting and sedimentation processes along an active dextral shear zone beneath the Gulf of Saros and the NE Aegean Sea were investigated on the basis of new high-resolution swath bathymetric data and multi-channel seismics. A long history of dextral shearing operating since the Pliocene culminated in the formation of a NE-SW-trending, ca. 800-m-deep basin (the so-called inner basin) in this region, which is bordered by a broad shelf along its northern and eastern sides and a narrow shelf at the southern side. The western extension of the North Anatolian Fault Zone (the Ganos Fault) cuts the eastern shelf along a narrow deformation zone, and ends sharply at the toe of the slope, where the strain is taken up by two NE-SW-oriented fault zones. These two fault zones cut the basin floor along its central axis and generate a new, Riedel-type pull-apart basin (the so-called inner depression). According to the bathymetric and seismic data, these basin boundary fault zones are very recent features. The northern boundary of the inner depression is a through-going fault comprising several NE-SW- and E-W-oriented, overlapping fault segments. The southern boundary fault zone, on the other hand, consists of spectacular en-echelon fault systems aligned in NE–SW and WNW–ESE directions. These en-echelon faults accommodate both dextral and vertical motions, thereby generating block rotations along their horizontal axis. As the basin margins retreat, the basin widens continuously by mass-wasting of the slopes of the inner basin. The mass-wasting, triggered by active tectonics, occurs by intense landsliding and channel erosion. The eroded material is transported into the deep basin, where it is deposited in a series of deep-sea fans and slumps. The high sedimentation rate is reflected in an over 1,500-m-thick basin fill which has accumulated in Pliocene–Quaternary times.  相似文献   

5.
In an initial stage, the Sea of Marmara developed as a graben and, in due course, considerable volumes of sediments were deposited in this basin. Before 200 ka, a new fault (New Marmara Fault) cutting through the whole basin developed, which postdated large sub-marine land sliding in the western part of the basin. This mass movement created the Western Ridge. The initiation of this strike-slip fault indicates that the extensional stress regime was replaced by a new, shearing stress field. In the eastern part of the Marmara Basin, the New Marmara Fault consists of two branches. The northern one replaces the normal faulting at the bottom of the northeastern slope of the basin. As a result, this slope has been rejuvenated. The southern branch is located along the central axis of the basin, forming the major extension of the North Anatolian Fault Zone within the region. Two restraining bends were formed because of the counterclockwise rotation of that part of the Anatolian Block. This resulted the uplifting of the Eastern Ridge and the formation of the positive flower structure within the Tekirdag Basin. The establishment of the compressional regime around the Sea of Marmara also resulted in the northwest–southeast shortening of the initial Marmara Basin.  相似文献   

6.
In this paper, we demonstrate the effectiveness of steerable filters as a method of delineating the boundaries of subsurface geological structures. Steerable filters, generally used for edge detection on 2-D images, have the properties of band pass filters with certain directions and are applied to many image processing problems. We first tested the method on synthetic data and then applied it to the aeromagnetic data of İskenderun Basin and adjacent areas.İskenderun Basin is located in the Northeastern Mediterranean where African–Arabian and Anatolian plates are actively interacting. The basin fill records a complex tectonic evolution since the Early Miocene, involving ophiolite emplacement, diachronous collision of Eurasian and Arabian plates and subsequent tectonic escape related structures and associated basin formation. Geophysical investigations of the tectonic framework of İskenderun Basin of Turkey provide important insights on the regional tectonics of the Eastern Mediterranean and Middle East. In this study we show geological structures, which are responsible for the magnetic anomalies in İskenderun Basin and enlighten the structural setting of the Northeastern Mediterranean triple junction using steerable filters. We obtained a magnetic anomaly map of the region from the General Directorate of Mineral Research and Exploration as raw data and then evaluated this by steerable filters. We determined the magnetic anomaly boundaries for İskenderun Basin by using various types of steerable filters and correlated these to drilling data and seismic profiles from the Turkish Petroleum Corporation. The result of the steerable filter analysis was a clarified aeromagnetic anomaly map of İskenderun Basin. The tectonic structure of İskenderun Basin is divided into regions by an N–S trending oblique-slip fault defined by the steerable filter outputs. We propose a new tectonic structure model of İskenderun Basin and modify the direction of the East Anatolian Fault Zone. In our model, East Anatolian Fault Zone cross-cuts the basin as a narrow fault zone and continues towards the Cyprus arc.  相似文献   

7.
We studied the active deformation zone of the middle strand of the North Anatolian Fault Zone through the southern part of the Sea of Marmara by means of high-resolution as well as deep seismic reflection data. Our main objective was to investigate the active deformation within the uppermost sedimentary layers at high resolution as well as deeper sedimentary layers, focusing on the tectonic and stratigraphic setting between Gemlik and Bandırma. The middle strand of the North Anatolian Fault reaching the Gulf of Gemlik is a main fault which has a lazy-S shape in the Gulf of Gemlik, and extends westwards to Bandırma as a main fault which is an E–W-trending single right-lateral fault controlling the zone along the Gemlik and Bandırma sub-basins. Small-scale faults, consistent with a dextral shear regime, are present in the vicinity of the main fault. Several oblique fault groups parallel to the main fault were detected. The deformation in the Gulf of Gemlik is characterized by a series of synthetic and antithetic faults emanating from the main fault. The boundary faults in the Gulf of Gemlik have a compressive component, which indicates the sill areas of the gulfs of Gemlik and Bandırma to be push-up structures. Four seismic stratigraphic units were identified in the sediments of the gulfs of Gemlik and Bandırma, providing evidence of tectonic influence. The present tectonic structure between Gemlik and Bandırma is not a pull-apart structure. The microseismic study in this area has shown that fault planes are either strike-slip or compressional, and that the stress tensor is compatible with pure strike-slip in the E–W fault system.  相似文献   

8.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

9.
New (2009) multi-beam bathymetric and previously published seismic reflection data from the NE-SW-oriented Fethiye Bay and the neighboring N-S-oriented Marmaris Bay off SW Anatolia were evaluated in order to interpret the seafloor morphology in terms of the currently still active regional tectonic setting. This area lies between the Pliny Trench, which constitutes the eastern sector of the subduction zone between the African and Eurasian plates in the Eastern Mediterranean, and the Fethiye-Burdur Fault Zone of the Anatolian Plate. The bathymetric data document the very narrow shelf of the Anatolian coast, a submarine plain between the island of Rhodes and Marmaris Bay, and a large canyon connecting the abyssal floor of the Rhodes Basin with Fethiye Bay. The latter are here referred to as the Marmaris Plain and Fethiye Canyon, respectively. Several active and inactive faults have been identified. Inactive faults (faults f1) delineate a buried basin beneath the Marmaris Plain, here referred to as the Marmaris Basin. Other faults that affect all stratigraphic units are interpreted as being active. Of these, the NE-SW-oriented Marmaris Fault Zone located on the Marmaris Plain is interpreted as a transtensional fault zone in the seismic and bathymetric data. The transtensional character of this fault zone and associated normal faults (faults f3) on the Marmaris Plain correlates well with the Fethiye-Burdur Fault Zone on land. Another important fault zone (f4) occurs along the Fethiye Canyon, forming the northeastern extension of the Pliny Trench. The transpressional character of faults f4 inferred from the seismic data is well correlated with the compressional structures along the Pliny Trench in the Rhodes Basin and its vicinity. These observations suggest that the Marmaris Fault Zone and faults f3 have evolved independently of faults f4. The evidence for this missing link between the Pliny Trench and the Fethiye-Burdur Fault Zone implies possible kinematic problems in this tectonic zone that deserve further detailed studies. Notably, several active channels and submarine landslides interpreted as having been triggered by ongoing faulting attest to substantial present-day sediment transport from the coast into the Rhodes Basin.  相似文献   

10.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

11.
黄海三大盆地的构造演化   总被引:15,自引:0,他引:15  
李乃胜 《海洋与湖沼》1995,26(4):355-362
70年代末到80年代中期,中国地质矿产部和中国科学院所属单位对黄海进行了大量地球物理调查和钻探,根据多道反射地震资料,浅地层剖面,重磁资料和钻探结果对黄海三大构造盆地进行地质构造学分析研究,结果表明,黄海地区三大盆地自北往南形成时代逐渐变新,构造活动性逐渐增强。  相似文献   

12.
南沙海区万安盆地构造演化与成因机制   总被引:2,自引:1,他引:1  
本文基于地震、钻井和区域地质资料,运用回剥法和平衡剖面技术定量研究了万安盆地的构造沉降和伸展程度,重建盆地的构造演化史并探讨其成因机制。模拟结果表明,万安盆地构造沉降曲线为多段式,其南北部构造沉降差异明显,且沉降中心逐渐向南发展的趋势。晚始新世-渐新世(37.8~23.03 Ma BP)盆地中、北部快速沉降,存在两个沉降中心;早中新世(23.03~16.0 Ma BP)盆地南部也发生快速沉降,整个盆地存在3个沉降中心;中中新世(约16.0~11.63 Ma BP)沉降作用减弱,盆地进入裂后热沉降期。万安盆地的伸展和形成演化呈现北早南晚的特征,与南海海底扩张密切相关,同时受控于万安断裂带交替地右旋-左旋走滑作用,是伸展和走滑双重作用的结果。盆地的构造演化过程可细分为4个阶段:初始裂谷期、主要裂谷期、走滑改造期和裂后加速沉降期。  相似文献   

13.
A total of 42 km of high-resolution seismic reflection and bathymetric data were collected for the first time to document stratigraphic and structural features of the uppermost 5 m of the Holocene sedimentary infill of Küçükçekmece Lagoon along the Marmara Sea coast of Turkey. The lagoon gradually deepens from 1 m off the northern coast to a maximum of 20 m in the southern basin. Stratigraphically, the uppermost seismic unit is characterized by a generally parallel reflection configuration, indicating deposition under low-energy conditions. In the southern basin of the lagoon, the sub-bottom is locally characterized by frequency attenuated and chaotic reflections interpreted as gas-charged sediments. Structurally, the soft sediment of the first 5 m below the lagoon floor is locally deformed by active strike-slip fault zones, here named FZ1, FZ2, and FZ3. These fault zones are NW–SE oriented and follow the long axis of the lagoon, compatible with the geographic alignment of the lagoon, the onland drainage pattern, and the scarps of the surrounding terrain. Moreover, the fault zones in Küçükçekmece Lagoon are well correlated with active offshore faults mapped during previous studies. This suggests that the FZ1, FZ2, and FZ3 fault zones are not merely local fault systems deforming the Küçükçekmece Lagoon bottom, but that they may be part of a regional fault zone extending both north and southward to merge with the northern branch of the North Anatolian Fault Zone (NAFZ) in the Ç?narc?k Basin. This, however, needs to be confirmed by further structural and seismological studies around Küçükçekmece Lagoon in order to more firmly establish its link with the NAFZ in the Marmara Sea, and to highlight potential seismic risks for the densely populated Istanbul metropolitan area.  相似文献   

14.
Two gravity cores (CAG-3 and C-15) from the tectonically active, 1,276-m deep Çınarcık Basin of the Marmara Sea each include three sandy turbiditic mud units (1 mm–2 cm thick) with sharp basal contacts. The high benthic foraminifer content of these units suggests that the sediments were transported by turbidity currents from the upper slope region. These units represent the thin edges of turbidites thickening towards the subsiding north-eastern part of the basin, and contain quartz, detrital calcite, intact shells and shell fragments, smectite, pyrite framboids, muscovite, biotite, epidote and garnet. Their clay fractions are more enriched in smectite than those of adjacent layers. AMS 14C ages (957±43 a.d. and 578±31 a.d.) of two upper and middle turbiditic units in core C15 overlap with the historical İstanbul-Thrace (intensity=10) and İstanbul-Kocaeli (intensity=9) earthquakes of 26 October 986 and 15 August 553, respectively. This overlap, together with sedimentological characteristics, strongly suggests that the turbiditic units are related to the tectono-seismic activity of the North Anatolian Fault. The age of the lowest turbiditic unit in core C-3 was found to be 6,573±87 a b.p. (calendar) by AMS 14 C. In terms of chronostratigraphic relationships and lithological composition, the turbiditic units in core CAG-3 cannot be correlated with those in C15. This can be explained by gravity-controlled sedimentation causing wedging out of turbidites towards the edge of the basin.  相似文献   

15.
The identification of past connection routes between the Black Sea and the Sea of Marmara, other than the traditional one through to the Bosphorus Strait, would be of considerable interest to the international scientific community. Nazik et al. (Geo-Mar Lett 31:75?C86 (2011) doi:10.1007/s00367-010-0216-9) suggest the possibility of two alternative waterway connections via lakes Sapanca and ?znik. Their Black Sea to Sea of Marmara multi-connection hypothesis, which is based on undated marine fossils collected in both lakes from surficial grab samples, conflicts with many earlier studies. In this contribution, the hypothesis and the underlying data are discussed in the light of previous tectonic, sedimentological and limnological findings showing that it is impossible to have had marine connections through lakes Sapanca and ?znik during the last 11.5?ka. Global sea-level trends and tectonic uplift rates would accommodate a connection between the Sea of Marmara and Lake ?znik in the middle Pleistocene. Uplift rates for the northern block of the North Anatolian Fault, when compared with the global sea-level curve, clearly indicate that there cannot have been a connection through the ?zmit Gulf?CLake Sapanca?CSakarya Valley for at least the past 500?ka. Moreover, borehole sediments along the western shores of Lake Sapanca, which reach down to the bedrock, do not contain any marine fossils.  相似文献   

16.
红河活动断裂带在南海西北部的反映   总被引:6,自引:0,他引:6  
红河断裂带是一条走滑的活动断裂带,它控制着南海西北部的构造活动,也控制着莺歌海盆地的形成和演化。根据南海西北部中穿过莺歌海盆地的地震剖面和历史资料进行解释,结果表明,莺歌海盆地的形成可分3个阶段:自50MaB.P.开始,沿红河断裂带的左旋错动和在印支地块的顺时针旋转的应力作用下,形成了莺歌海盆地的雏形;24MaB.P.之后在左旋压扭应力场作用下,形成了盆地西北部的反转构造;5MaB.P.之后发生了右旋错动,盆地内快速沉降,发育巨厚沉积层。根据盆地内最老和最新的沉积中心之间的距离,推测沿红河断裂带的左旋位错约200km。该断裂带发展到现代,其活动性大为减弱,曾发生10次小于5级地震。  相似文献   

17.
莺歌海盆地新构造运动与超压体系喷溢油气成藏作用   总被引:7,自引:0,他引:7  
莺歌海盆地是在岩石圈伸展减薄和红河断裂带南段的右旋扭动联合作用下形成的一个以伸展为主的转换—伸展盆地。受该应力场作用,盆地新构造运动活跃,主要表现包括中新统末、上新统与第四纪之间及层系内部的不整合,盆地的沉降,沉积中心的迁移,断裂活动,底辟带的发育与分布,泥火山和地震等。新构造运动不但控制了盆地的形成演化、沉降—沉积中心的迁移和底辟构造带发育以及它们的雁行排列特征,同时还控制了盆地油气的成藏和分布。莺歌海盆地是一个强超压盆地,新构造时期断裂的多期活动及其控制的多期底辟活动不但形成超压体系(包括油气)快速垂向运移的通道,同时决定了莺歌海超压盆地油气田的快速幕式充注成藏规律。成熟的烃类以溶解状态储存在超压体系中,当超压体系孔隙流体压力大于封闭盖层破坏压力时封闭盖层就产生水压破裂,超压体系便沿着活动断裂和底辟带等通道发生喷溢活动,油气向上或侧向往过渡带和常压带运移聚集成藏,随着压力的下降,断裂重新闭合形成新的封闭层。这一喷溢过程以幕式活动形式周而复始,在超压盆地的过渡带和常压带中形成大的油气藏。  相似文献   

18.
A re-evaluation of the reprocessed seismic reflection data was made for the investigation of the presumed western continuation of the North Anatolian Fault (NAF) in the Aegean and mapping geometries of active faults in the Aegean Sea. Seismic data collected and processed by various national and international companies were selected from the data archives and they were reprocessed after stacking to bring them to the same processing and signal-to-noise ratio standards. The total length of the selected lines is 8000 km. We investigated the character of active faulting in the North Aegean Sea using seismic reflection data. Moreover, the relations of active faults with earthquakes were examined using earthquake fault plane solutions (FPS). We show that the active faults are dominantly normal in character in the NNE Aegean where FPS for earthquakes with M>5 indicate strike-slip movements along these faults. We propose a simple mechanism that potentially explains this inconsistency. Active normal faults are oriented in a NE–SW direction in alignment with the SW escape motion of the Anatolian block in this region and this orientation facilitates instantaneously strike-slip movements along these otherwise normal faults.  相似文献   

19.
东海陆架盆地南部中生代构造演化与原型盆地性质   总被引:10,自引:0,他引:10  
东海陆架盆地南部夹持于欧亚板块、太平洋板块与印度板块之间,是发育在前中生代基础之上的中、新生代叠合盆地。其构造演化受古太平洋板块俯冲及特提斯-喜马拉雅构造域的联合影响,经历了印支末期基隆运动、燕山期渔山和雁荡运动的叠加改造。结合浙闽隆起带中生代火成岩事件、盆地构造变形、沉积学的一些证据,通过海陆对比研究,认为东海陆架盆地南部早-中三叠世可能为面向古太平洋的被动大陆边缘盆地;晚三叠世-侏罗纪古太平洋板块已对中国大陆有较强的俯冲作用,东海陆架盆地及南部原型盆地为活动大陆边缘弧前盆地;白垩纪受控于滨海断裂表现为活动大陆边缘走滑拉分盆地;古新世-始新世火山岛弧向东移动,东海陆架变为弧后裂谷盆地。  相似文献   

20.
渤海的地质演化与断裂活动   总被引:3,自引:0,他引:3  
本文将渤海的地质演化分为:前中生代、中生代和新生代三大时期,并论述各个时期的构造特征和地层分布。渤海的断裂系统主要有北北东—北东、近东西和北西向三组,每组断裂既有其各自的发生、发展规率,同时彼此之间又有一定的关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号