首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.  相似文献   

2.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

3.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

4.
We study the variability of the Hγ, Hβ, and Hα line profiles in the spectrum of the supergiant κ Cas. The variability pattern proved to be the same for all the lines considered: their profiles are superimposed by blueshifted, central, and redshifted emission. For Hγ the positions of the emissions coincide with the positions of the corresponding emissions for He I λλ 5876, 6678 Å lines, and are equal to about ?135 ± 30.0 km s?1, ?20 ± 20 kms?1, and 135 ± 30.0 kms?1, respectively, whereas the three emissions in the Hβ profiles are fixed at about ?170.0 ± 70.0 kms?1, 20 ± 30 kms?1, and 170.0 ± 70.0 km s?1, respectively. The positions of the blueshifted and central emissions for Hα are the same as for Hβ, with additional blueshifted emission at ?135.0 ± 30.0 kms?1, whereas no traces of emission can be seen in the red wing of the line. These emissions show up more conspicuously in wind lines, however, their traces can be seen in all photospheric lines. When passing from wind lines to photospheric lines the intensity of superimposed emission components decreases and the same is true for the absolute values of their positions in line wings expressed in terms of radial velocities. The V/R variations of the lines studied found in the spectrum of κ Cas and the variability of the Hα emission indicate that the star is a supergiant showing Be phenomenon.  相似文献   

5.
Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s?1 kpc?1, B = ?11.90 ± 0.05 km s?1 kpc?1, C = ?2.99 ± 0.06 km s?1 kpc?1, K = ?4.04 ± 0.16 km s?1 kpc?1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s?1 kpc?1, B = ?12.71 ± 0.06 km s?1 kpc?1, C = ?2.04 ± 0.08 km s?1 kpc?1, K = ?2.72 ± 0.19 km s?1 kpc?1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is ?4.32 ± 0.08 km s?1 kpc?1 for main-sequence stars and ?0.61 ± 0.11 km s?1 kpc?1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.  相似文献   

6.
Power spectra of segmentation-cell length (a dominant length scale of EUV emission in the transition region) from full-disk He?ii extreme ultraviolet (EUV) images observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during periods of quiet-Sun conditions for a time interval from 1996 to 2015 were analyzed. The spatial power as a function of the spatial frequency from about 0.04 to 0.27 (EIT) or up to 0.48 (AIA) Mm?1 depends on the distribution of the observed segmentation-cell dimensions – a structure of the solar EUV network. The temporal variations of the spatial power reported by Didkovsky and Gurman (Solar Phys. 289, 153, 2014) were suggested as decreases at the mid-spatial frequencies for the compared spectra when the power curves at the highest spatial frequencies of 0.5 pix?1 were adjusted to match each other. This approach has been extended in this work to compare spectral ratios at high spatial frequencies expressed in the solar spatial frequency units of Mm?1. A model of EIT and AIA spatial responses allowed us to directly compare spatial spectral ratios at high spatial frequencies for five years of joint operation of EIT and AIA, from 2010 to 2015. Based on this approach, we represent these ratio changes as a long-term network transformation that may be interpreted as a continuous dissipation of mid-size network structures to the smaller-size structures in the transition region. In contrast to expected cycling of the segmentation-cell dimension structures and associated spatial power in the spectra with the solar cycle, the spectra demonstrate a significant and steady change of the EUV network. The temporal trend across these structural spectra is not critically sensitive to any long-term instrumental changes, e.g. degradation of sensitivity, but to the change of the segmentation-cell dimensions of the EUV network structure.  相似文献   

7.
We present a seismological method for probing the solar atmosphere above sunspot umbrae with three-minute oscillations. Our technique allows us to estimate both the vertical distance between atmospheric layers and the wave-propagation speed, without specifying any additional parameters, in particular, the phase speed of the wave or the emission formation heights. Our method uses the projected wave paths of slow magnetohydrodynamic waves that propagate through the atmospheric layers of different heights and are guided by the magnetic field. The length of the projected wave path depends upon the distance between the layers and the inclination angle of the magnetic field with respect to the line of sight, allowing us to estimate the distance between the layers from measured projected wave paths and the local magnetic-field vector. In turn, the wave-propagation delay registered at different heights allows for the calculation of the phase speed. We estimated the vertical distance between the emission layers at the temperature minimum (1600 Å) and transition region (304 Å), as well as the average phase speed above the sunspot umbrae, for three active regions. We found that the distance between the 1600 Å emission layer and the transition region above the sunspot umbrae lies in the range of 500?–?800 km. The average phase speed between these layers was found to be about 30 km?s?1, giving a sound speed of 6 km?s?1. The temperature between the layers has been roughly estimated as 3000 K and corresponds to the region of the temperature minimum. The results obtained are consistent with the semiempirical model of the sunspot-umbrae atmosphere by Fontenla et al. (Astrophys. J.707, 482, 2009).  相似文献   

8.
We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided Teff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms?1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms?1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.  相似文献   

9.
Based on the high spectral resolution monitoring conducted at the 6-m BTA telescope, we study the optical spectrum of the high-latitude variable V534 Lyr. Heliocentric radial velocities Vr corresponding to the positions of all metal absorption components, as well as the Na I D and Hα lines were measured during all the observational sets. The analysis of the velocity field examining the lines of various nature revealed a low-amplitude variability of Vr based on the lines with a high excitation potential, which are formed in deep layers of the stellar atmosphere, and allowed to estimate the systemic velocity of Vsys ≈ ?125 kms?1 (Vlsr ≈ ?105 kms?1). The distance estimate of d ≈ 6 kpc for the star leads to its absolute magnitude of \(M_V \approx - 5_ \cdot ^m 3\), what corresponds to the spectral classification. The previously undetected spectral phenomenon was revealed for this star: at certain times a splitting of the profiles of low-excited absorptions is observed, reaching ΔVr = 20–50 kms?1. A combination of the parameters: reduced metallicity [Met/H] = ?0.28, high nitrogen abundance [N/Fe] = +1.10, large spatial velocity, high luminosity, a strong variability of the emission-absorption profiles of HI lines, splitting of metal absorptions at different times of observations and the variability of the velocity field in the atmosphere allow to classify V534 Lyr as a pulsating star in the thick disk of our Galaxy.  相似文献   

10.
We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of Teff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s?1, [M/H] = ?1.81 dex, and v sin i= 5 km s?1 for LSIV-04 1 and Teff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s?1, and [Fe/H] = ?0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s?1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = ?0.2 dex, [Si/Fe] = ?0.4 dex, [S/Fe] = ?0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e.VLSR = 73 km s?1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.  相似文献   

11.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

12.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

13.
14.
In the framework of the MOdified Newtonian Dynamics (MOND), the internal dynamics of a gravitating system s embedded in a larger one S is affected by the external background field E of S even if it is constant and uniform, thus implying a violation of the Strong Equivalence Principle: it is the so-called External Field Effect (EFE). In the case of the solar system, E would be A cen≈10?10 m?s?2 because of its motion through the Milky Way: it is orders of magnitude smaller than the main Newtonian monopole terms for the planets. We address here the following questions in a purely phenomenological manner: are the Sun’s planets affected by an EFE as large as 10?10 m?s?2? Can it be assumed that its effect is negligible for them because of its relatively small size? Does E induce vanishing net orbital effects because of its constancy over typical solar system’s planetary orbital periods? It turns out that a constant and uniform acceleration, treated perturbatively, does induce non-vanishing long-period orbital effects on the longitude of the pericenter ? of a test particle. In the case of the inner planets of the solar system and with E≈10?10 m?s?2, they are 4–6 orders of magnitude larger than the present-day upper bounds on the non-standard perihelion precessions \(\Delta\dot{\varpi}\) recently obtained with by E.V. Pitjeva with the EPM ephemerides in the Solar System Barycentric frame. The upper limits on the components of E are E x ≤1×10?15 m?s?2, E y ≤2×10?16 m?s?2, E z ≤3×10?14 m?s?2. This result is in agreement with the violation of the Strong Equivalence Principle by MOND. Our analysis also holds for any other exotic modification of the current laws of gravity yielding a constant and uniform extra-acceleration. If and when other corrections \(\Delta\dot{\varpi}\) to the usual perihelion precessions will be independently estimated with different ephemerides it will be possible to repeat such a test.  相似文献   

15.
Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010?–?2017 were used to continue our previous analyses reported by Didkovsky and Gurman (Solar Phys.289, 153, 2014a) and Didkovsky, Wieman, and Korogodina (Solar Phys.292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two “standard” solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a “typical” trend of instrumental degradation or a long-term activity profile from the He?ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.  相似文献   

16.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

17.
At 11:46 UT on 9 September 2011, the Wind spacecraft encountered an interplanetary (IP) fast-forward shock. The shock was followed almost immediately by a short-duration (~?35 minutes) extremely dense pulse (with a peak ~?94 cm?3). The pulse induced an extremely large positive impulse (SYM-H = 74 nT and Dst = 48 nT) on the ground. A close examination of other in situ parameters from Wind shows that the density pulse was associated with i) a spike in the plasma \(\upbeta\) (ratio of thermal to magnetic pressure), ii) multiple sign changes in the azimuthal component of the magnetic field (\(B_{\phi}\)), iii) a depressed magnetic field magnitude, iv) a small radial component of the magnetic field, and v) a large (>?90°) change in the suprathermal (~?255 eV) electron pitch angle across the density pulse. We conclude that the density pulse is associated with the heliospheric plasma sheet (HPS). The thickness of the HPS is estimated to be \({\sim}\,8.2\times10^{5}\ \mbox{km}\). The HPS density peak is about five times the value of a medium-sized density peak inside the HPS (~?18 cm?3) at 1 AU. Our global three-dimensional magnetohydrodynamic simulation results (Wu et al. in J. Geophys. Res. 212, 1839, 2016) suggest that the extremely large density pulse may be the result of the compression of the HPS by an IP shock crossing or an interaction between an interplanetary shock and a corotating interaction region.  相似文献   

18.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

19.
The far-side solar eruptive event SOL2014-09-01 produced hard electromagnetic and radio emissions that were observed with detectors at near-Earth vantage points. Especially challenging was a long-duration >?100 MeV \(\gamma\)-ray burst that was probably produced by accelerated protons exceeding 300 MeV. This observation raised the question how high-energy protons could reach the Earth-facing solar surface. Some preceding studies discussed a scenario in which protons accelerated by a shock driven by a coronal mass ejection high in the corona return to the solar surface. We continue with the analysis of this challenging event, involving radio images from the Nançay Radioheliograph and hard X-ray data from the High Energy Neutron Detector (HEND) of the Gamma-Ray Spectrometer onboard the Mars Odyssey space observatory located near Mars. HEND recorded unocculted flare emission. The results indicate that the emissions observed from the Earth’s direction were generated by flare-accelerated electrons and protons trapped in static long coronal loops. They can be reaccelerated in these loops by a shock wave that was excited by the eruption, being initially not driven by a coronal mass ejection. The results highlight ways to address the remaining questions.  相似文献   

20.
The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth’s environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun–Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003?–?present) and TIMED (2002?–?present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号