首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Quartz dissolution in melts in the KCAS and KCMAS systems results in the formation of a silica- and potassium-enriched boundary layer next to the dissolving crystals. The presence of potassium in CAS melts has no discernible effect on dissolution rate compared with that in K-free melts with otherwise similar composition despite a small decrease in the diffusivity of silica in the potassium-bearing melts. The decrease in silica diffusivity is offset by an increase in the solubility of silica in the K-bearing melts. Addition of potassium to CMAS melts results in a large decrease in the dissolution rate of quartz. Even though the solubility of silica is enhanced, the addition of potassium leads to large changes in the structure of the melt in the boundary layer (as measured by NBO/T), which results in a large decrease in the diffusivity of silica and thus slower dissolution. There is significant diffusive coupling of Al2O3, CaO and MgO during dissolution, which leads to local uphill diffusion of these components. K2O is decoupled from the other components, as shown by its much thicker diffusion zone. Potassium moves through the boundary layer as a result of two homogeneous reactions: uphill diffusion in which potassium diffuses into the silica-enriched melt adjacent to the dissolving quartz crystal and downhill diffusion in the region furthest from the crystal–melt interface where SiO2 and K2O diffuse away from the interface together.  相似文献   

2.
The dissolution rate of minerals in silicate melts is generally assumed to be a function of the rate of mass transport of the released cations in the solvent. While this appears to be the case in moderately to highly viscous solvents, there is some evidence that the rate-controlling step may be different in very fluid, highly silica undersaturated melts such as basanites. In this study, convection-free experiments using solvent melts with silica activity from 0.185–0.56 and viscosity from 0.03–4.6 Pa s show that the dissolution rate is strongly dependent on the degree of superheating, silica activity and the viscosity of the solvent. Dissolution rates increase with increasing melt temperature and decreasing silica activity and viscosity. Quartz dissolution in melts with viscosity <0.59–1.9 Pa s and silica activity <0.47 is controlled by the rate of interface reaction as shown by the absence of steady state composition and silica saturation in the interface melts. Only in the most viscous melt with the highest silica activity is quartz dissolution controlled by the rate of diffusion in the melt and only after a long initiation time. The results of this study indicate that although a diffusion-based model may be applicable to dissolution in viscous magmas, a different approach that combines the interplay between the degree of undersaturation of the melt and its viscosity is required in very fluid melts.This revised version was published online September 2004 with a correction to Figure 8.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(23-24):3983-3995
Exact solutions to equations governing isothermal diffusive dissolution of a crystalline slab in a ternary liquid were obtained to include the effect of coupled chemical diffusion in the liquid. These analytical results, supplemented by approximate solutions valid for slow dissolving, provide new insights into the characteristics of diffusive dissolution in ternary systems. Dissolution rate is proportional to square root of time in diffusive dissolution. The coefficient of proportionality is a function of diffusion coefficients, liquidus relation, melt composition at the crystal–melt interface, and compositions of the dissolving crystal and starting melt. In the limit of slow dissolving, the dissolution rate can be written in terms of three dimensionless parameters that are functions of the aforementioned parameters. Dissolution rate is proportional to the diffusion rate of the slow eigen component in the melt when the diffusion rate of the minor eigen component is much slower than the diffusion rate of the major eigen component.Laboratory experiments of diffusive dissolution of single crystals and polycrystalline aggregates of quartz in a haplodacitic melt (25 wt.% CaO, 15 wt.% Al2O3, and 60 wt.% SiO2) were conducted at 1500°C and 1 GPa. Measured dissolution distances (Xb, in microns) are proportional to the square root of experimental run time (t, in seconds), Xb = −0.620 (±0.019) √t. Chemical concentration profiles measured from quenched melts are invariant with time when displayed against the distance (measured from the crystal–melt interface) normalized by the square root of time. The melt compositions at the crystal–melt interface, extrapolated from the measured diffusion profiles in the quenched melts, are within 0.2 wt.% of the independently measured quartz liquidus in the ternary CaO–Al2O3–SiO2 at 1500°C and 1 GPa. These results suggest that crystal and melt are in chemical equilibrium at their interface shortly after the onset of dissolution. Diffusive dissolution of quartz and quartzite is characterized by slow dissolving. Using quartz liquidus as one of the boundary conditions, it has been shown that the calculated dissolution distances and concentration profiles are in good agreement with the experimentally measured ones. Coupled diffusion played an essential role in quartz and quartzite dissolution in haplodacitic to haplobasaltic melts, and is likely to play an important role in diffusion-limited kinetic processes such as crystal growth and dissolution in natural melts of basaltic–rhyolitic compositions.  相似文献   

4.
Phase relations were investigated in the model water-saturated system Si-Al-Na-Li-F-O at high fluorine contents, a temperature of 800°C, and a pressure of 1 kbar. The obtained aluminosilicate melts are widely variable from quartz- to nepheline-normative compositions with agpaitic indexes both higher and lower than one. Various fluoride, aluminofluoride, and oxide phases were observed in the equilibrium assemblage depending on the melt composition: quartz and cryolite associate with the silica richest aluminosilicate melts, topaz and corundum coexist with peraluminous melts, and villiaumite was observed in highly peralkaline melts. Extensive immiscibility between aluminosilicate and aluminofluoride melts was observed in the system. Aluminofluoride melt coexists with quartz- and nepheline-normative aluminosilicate melts with agpaitic indexes (K a) of 0.7–1.4. The composition of aluminosilicate melt in equilibrium with aluminofluoride melt ranges from 33 to 70 wt % SiO2, from 12 to 24 wt % Al2O3, and from 5 to 16 wt % alkalis. The aluminofluoride melt is variable in composition, its Al/Na ratio ranges from 20/80 to 40/60 depending on the composition of the equilibrium aluminosilicate melt. The experimental aluminosilicate melts equilibrated with cryolite, topaz, and aluminofluoride melt coincide in major component proportions with the bulk compositions of cryolite- and topaz-bearing granites and melt inclusions in minerals.  相似文献   

5.
The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers.The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other.A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.  相似文献   

6.
Experimental study of the effect of SiO2 on Ni solubility in silicate melts   总被引:1,自引:0,他引:1  
A. A. Borisov 《Petrology》2006,14(6):530-539
The solubility of Ni in silicate melts with variable SiO2 content was studied at a total pressure of 1 atm within a wide range of temperature and oxygen fugacity. The maximum solubility of Ni (minimum activity coefficient of NiO) was observed in melts with ~55–57 wt % SiO2, regardless of temperature and oxygen fugacity. Melts beyond this range showed significantly lower Ni solubility and, correspondingly, higher NiO activity coefficients. The analysis of our results and literature data led us to the conclusion that the NBO/T (number of nonbridging oxygen atoms per tetrahedrally coordinated atom) is inadequate to describe the effect of melt composition on Ni solubility.  相似文献   

7.
A. A. Borisov 《Petrology》2007,15(6):523-529
The solubility of cobalt and iron in silicate melts with variable SiO2 content was experimentally determined under controlled oxygen fugacity. It was shown that, independent of temperature and oxygen fugacity, the solubility of the two metals reaches a maximum (minimum of CoO and FeO activity coefficients) in melts of intermediate compositions. The analysis of available published data demonstrated that the γMeO values of at least four metals (Ni, Co, Fe, and Cr) dissolving in melts as divalent oxides show a minimum in melts with \(X_{SiO_2 } \) ≈ 57 ± 2 mol %. The position of the minimum is essentially independent of the element, melt temperature, and oxide concentration (from a few ppm to 13 wt%). The extremes of iron solubility (γFeO) in Fe-rich MgO-free melts may shift toward significantly lower \(X_{SiO_2 } \) values, although this inference requires additional experimental verification. Using a numerical example, some problems were discussed in the use of experimental data obtained in different laboratories for the development of a general model for the γMeO dependence on melt composition.  相似文献   

8.
Trace concentrations of Ti in quartz are used to indicate the pressure and temperature conditions of crystallization in the ‘TitaniQ’ geothermobarometer of Thomas et al. (Contrib Miner Petrol 160:743–759, 2010). It utilises the partitioning of Ti into quartz as an indicator of the pressures and/or temperatures of crystal growth. For a given value of TiO2 activity in the system, if temperatures are inferred to ±20 °C, pressure is constrained to ±1 kbar and vice versa. There are significant contrasts, however, between the conclusions from TitaniQ and those for natural quartz (as well as other mineral phases) in volcanic rocks. Application of the TitaniQ model to quartz from the 27 ka Oruanui and 760 ka Bishop high-silica rhyolites, where the values of T, P and TiO2 activity are constrained by other means (Fe–Ti oxide equilibria, melt inclusion entrapment pressures in gas-saturated melts, melt and amphibole compositions), yields inconsistent results. If realistic values are given to any two of these three parameters, then the value of the third is wholly unrealistic. The model yields growth temperatures at or below the granite solidus, pressures in the lower crust or upper mantle, or TiO2 activities inconsistent with the mineralogical and chemical compositions of the magmas. CL imagery and measurements of Ti (and other elements) in quartz are of great value in showing the growth histories and changes in conditions experienced by crystals, but direct linkages to P, T conditions during crystal growth cannot be achieved.  相似文献   

9.
Viscosity experiments were conducted with two flux-rich pegmatitic melts PEG0 and PEG2. The Li2O, F, B2O3 and P2O5 contents of these melts were 1.04, 4.06, 2.30 and 1.68 and 1.68, 5.46, 2.75 and 2.46 wt%, respectively. The water contents varied from dry to 9.04 wt% H2O. The viscosity was determined in internally heated gas pressure vessels using the falling sphere method in the temperature range 873–1,373 K at 200 and 320 MPa pressure. At 1,073 K, the viscosity of water-rich (~9 wt% H2O) melts is in the range of 3–60 Pa s, depending on the melt composition. Extrapolations to lower temperature assuming an Arrhenian behavior indicate that highly fluxed pegmatite melts may reach viscosities of ~30 Pa s at 773 K. However, this value is a minimum estimation considering the strongly non-Arrhenian behavior of hydrous silicate melts. The experimentally determined melt viscosities are lower than the prediction of current models taking compositional parameters into account. Thus, these models need to be improved to predict accurately the viscosity of flux-rich water bearing melts. The data also indicate that Li influences significantly the melt viscosity. Decreasing the molar Al/(Na + K + Li) ratio results in a strong viscosity decrease, and highly fluxed melts with low Al/(Na + K + Li) ratios (~0.8) have a rheological behavior which is very close to that of supercritical fluids.  相似文献   

10.
The behaviour of niobium and tantalum in magmatic processes has been investigated by conducting MnNb2O6 and MnTa2O6 solubility experiments in nominally dry to water-saturated peralkaline (aluminium saturation index, A.S.I. 0.64) to peraluminous (A.S.I. 1.22) granitic melts at 800 to 1035 °C and 800 to 5000 bars. The attainment of equilibrium is demonstrated by the concurrence of the solubility products from dissolution, crystallization, Mn-doped and Nb- or Ta-doped experiments at the same pressure and temperature. The solubility products of MnNb2O6 (Ksp Nb) and MnTa2O6 (Ksp Ta) at 800 °C and 2 kbar both increase dramatically with alkali contents in water-saturated peralkaline melts. They range from 1.2 × 10−4 and 2.6 × 10−4 mol2/kg2, respectively, in subaluminous melt (A.S.I. 1.02) to 202 × 10−4 and 255 × 10−4 mol2/kg2, respectively, in peralkaline melt (A.S.I. 0.64). This increase from the subaluminous composition can be explained by five non-bridging oxygens being required for each excess atom of Nb5+ or Ta5+ that is dissolved into the melt. The Ksp Nb and Ksp Ta also increase weakly with Al content in peraluminous melts, ranging up to 1.7 × 10−4 and 4.6 × 10−4 mol2/kg2, respectively, in the A.S.I. 1.22 composition. Columbite-tantalite solubilities in subaluminous and peraluminous melts (A.S.I. 1.02 and 1.22) are strongly temperature dependent, increasing by a factor of 10 to 20 from 800 to 1035 °C. By contrast columbite-tantalite solubility in the peralkaline composition (A.S.I. 0.64) is only weakly temperature dependent, increasing by a factor of less than 3 over the same temperature range. Similarly, Ksp Nb and Ksp Ta increase by more than two orders of magnitude with the first 3 wt% H2O added to the A.S.I. 1.02 and 1.22 compositions, whereas there is no detectable change in solubility for the A.S.I. 0.64 composition over the same range of water contents. Solubilities are only slightly dependent on pressure over the range 800 to 5000 bars. The data for water-saturated sub- and peraluminous granites have been extrapolated to 600 °C, conditions at which pegmatites and highly evolved granites may crystallize. Using a melt concentration of 0.05 wt% MnO, 70 to 100 ppm Nb or 500 to 1400 ppm Ta are required for manganocolumbite and manganotantalite saturation, respectively. The solubility data are also used to model the fractionation of Nb and Ta between rutile and silicate melts. Predicted rutile/melt partition coefficients increase by about two orders of magnitude from peralkaline to peraluminous granitic compositions. It is demonstrated that the γNb2O5/γTa2O5 activity coefficient ratio in the melt phase depends on melt composition. This ratio is estimated to decrease by a factor of 4 to 5 from andesitic to peraluminous granitic melt compositions. Accordingly, all the relevant accessory phases in subaluminous to peraluminous granites are predicted to incorporate Nb preferentially over Ta. This explains the enrichment of Ta over Nb observed in highly fractionated granitic rocks, and in the continental crust in general. Received: 9 August 1996 / Accepted: 26 February 1997  相似文献   

11.
12.
Carbon dioxide solubilities in H2O-free hydrous silicate melts of natural andesite (CA), tholeiite (K 1921), and olivine nephelinite (OM1) compositions have been determined employing carbon-14 beta-track mapping techniques. The CO2 solubility increases with increasing pressure, temperature, and degree of silica-undersaturation of the silicate melt. At 1650° C, CO2 solubility in CA increases from 1.48±0.05 wt % at 15 kbar to 1.95±0.03 wt % at 30 kbar. The respective solubilities in OM1 are 3.41±0.08 wt % and 7.11±0.10 wt %. The CO2 solubility in K1921 is intermediate between those of CA and OM1 compositions. At lower temperatures, the CO2 contents of these silicate melts are lower, and the pressure dependence of the solubility is less pronounced. The presence of H2O also affects the CO2 solubility (20–30% more CO2 dissolves in hydrous than in H2O-free silicate melts); the solubility curves pass through an isothermal, isobaric maximum at an intermediate CO2/(CO2+H2O) composition of the volatile phase. Under conditions within the upper mantle where carbonate minerals are not stable and CO2 and H2O are present a vapor phase must exist. Because the solubility of CO2 in silicate melts is lower than that of H2O, volatiles must fractionate between the melt and vapor during partial melting of peridotite. Initial low-temperature melts will be more H2O-rich than later high-temperature melts, provided vapor is present during the melting. Published phase equilibrium data indicate that the compositional sequence of melts from peridotite +H2O+CO2 parent will be andesite-tholeiite-nephelinite with increasing temperature at a pressure of about 20 kbar. Examples of this sequence may be found in the Lesser Antilles and in the Indonesian Island Arcs.  相似文献   

13.
The speciation of water in silicate melts   总被引:1,自引:0,他引:1  
Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model relates the proportions of molecular water and hydroxyl groups in melts via the following reaction describing the homogeneous equilibrium between melt species: H2Omolecular (melt) + oxygen (melt) = 2OH (melt). An equilibrium constant has been formulated for this reaction and species are assumed to mix ideally. Given an equilibrium constant for this reaction of 0.1–0.3, the proposed model can account for variations in the concentrations of molecular water and hydroxyl groups in melts as functions of the total dissolved water content that are similar to those observed in glasses. The solubility of molecular water in melt is described by the following reaction: H2O (vapor) = H2Omolecular (melt).These reactions describing the homogeneous and heterogeneous equilibria of hydrous silicate melts can account for the following observations: the linearity between fH2O and the square of the mole fraction of dissolved water at low total water contents and deviations from linearity at high total water contents; the difference between the partial molar volume of water in melts at low total water contents and at high total water contents; the similarity between water contents of vapor-saturated melts of significantly different compositions at high pressures versus the dependence on melt composition of water solubility in silicate melts at low pressures; and the variations of viscosity, electrical conductivity, the diffusivity of “water,” the diffusivity of cesium, and phase relationships with the total dissolved water contents of melts.This model is thus consistent with available observations on hydrous melt systems and available data on the species concentrations of hydrous glasses and is easily tested, since measurements of the concentrations of molecular water and hydroxyl groups in silicate glasses quenched from melts equilibrated over a range of conditions and total dissolved water contents are readily obtainable.  相似文献   

14.
Interaction of metallic gold with (Na, K)Cl salt melts was investigated by the weight-loss method at 700–1000°C using silica glass ampoules. Interaction was not detected in hermetic evacuated ampoules over the whole temperature interval and even after the addition of 5 wt % Na2SO4 as a possible oxidizer to the salt. Gold solubility increased sharply in open ampoules, but this was accompanied by the evaporation of salt melt and, possibly, AuClx. The limiting gold solubility in the salt melt at 860°C was estimated as 1 wt % or 10000 ppm. The model of gold transport in a gas phase during magmatic degassing invokes shallow gold extraction by salt melt, melt evaporation, and removal of precipitated metallic particles by the gas phase.  相似文献   

15.
The effect of sulfur on phosphorus solubility in rhyolitic melt and the sulfur distribution between apatite, ±anhydrite, melt and fluid have been determined at 200 MPa and 800–1,100 °C via apatite crystallization and dissolution experiments. The presence of a small amount of sulfur in the system (0.5 wt.% S) under oxidizing conditions increases the solubility of phosphorus in the melt, probably due to changing calcium activity in the melt as a result of the formation of Ca-S complexing cations. Apatite solubility geothermometers tend to overestimate temperature in Ca-poor, S-bearing system at oxidizing conditions. In crystallization experiments, the sulfur content in apatite decreases with decreasing temperature and also with decreasing sulfur content of the melt. The sulfur partition coefficient between apatite and rhyolitic melt increases with decreasing temperature (KdSapatite/melt=4.5–14.2 at T=1,100–900 °C) under sulfur-undersaturated conditions (no anhydrite). The sulfur partition coefficient is lower in anhydrite-saturated melt (~8 at 800 °C) than in anhydrite-undersaturated melt, suggesting that KdSapatite/melt depends not only on the temperature but also on the sulfur content of the melt. These first results indicate that the sulfur content in apatite can be used to track the evolution of sulfur content in a magmatic system at oxidizing conditions.Editorial responsibility: J. Hoefs  相似文献   

16.
The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible.The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water.The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200°C to about 2.1 at 350°C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350°C, but other polymeric forms become important at lower temperatures.  相似文献   

17.
An experimental study of bromine behaviour in water-saturated silicic melts   总被引:1,自引:0,他引:1  
To assess the effect of the melt composition on bromine concentrations in magmas, we have investigated bromide solubility for water-saturated, iron-free silicic melts with variable Na+K/Al and Si/Al molar ratios (albite, haplogranite, rhyolite, and pantellerite). The experiments were performed in rapid quench cold-seal autoclaves over a range of pressure (1, 1.5, and 2 kbar) and temperature (900, 1000, and 1080 °C) with run durations from 5 to 7 days. A series of natural volcanic glasses and melt inclusions hosted in magmatic minerals were analysed together with the synthetic glasses by PIXE (proton-induced X-ray emission). The Br concentrations range from 5360 to 7850 ppm for albite, from 2800 to 3900 ppm for haplogranite, from 4300 to 5900 ppm for rhyolite, and from 9745 to 11,250 ppm for pantellerite. Br concentrations are negatively correlated with pressure in H2O-saturated silicic melts and vary with (Na+K)/Al molar ratio with a minimum value at the ratio close to unity. Br behaves similarly to chlorine for all of these melt compositions. The bromide solubility is similar in albitic and rhyolitic melts, which implies that Df/m is nearly the same for both compositions and is applicable for natural rhyolites as suggested in our previous study (Bureau et al., 2000). This means that the volcanic Br contribution to the atmosphere may be significant. In natural obsidian samples and MI hosted in quartz, olivine, and leucite, the Br concentration varies from < 3 to 28 ppm, with the highest concentrations in pantelleritic melts. We attribute the low Br concentrations of natural melts to a low initial abundance of this halogen in the Earth mantle. However, because Br behaves as an incompatible element before water exsolution, our results imply that magmas could contain much more dissolved Br before eruption and water degassing than the few ppm usually measured in volcanic rocks. Br behaviour during magma crystallisation is controlled by its partitioning into the H2O-rich fluid phase when this occurs. In addition, its potential high solubility in silicate melts makes it a very sensitive chemical tracer of magma contamination by seawater and Br-rich material. This infers that the investigation of Br behaviour in subduction-zone samples may help for a better understanding of volatiles cycling between the Earth reservoirs.  相似文献   

18.
Experiments dissolving orthopyroxene (En93) in a variety of Si-undersaturated alkaline melts at 1 atmosphere and variable f O2 demonstrate that orthopyroxene dissolves to form olivine, Si-rich melt and clinopyroxene. These phases form a texturally and chemically distinct boundary layer around the partly dissolved orthopyroxene crystals. The occurrence of clinopyroxene in the boundary layer is due to inward diffusion of Ca from the solvent melt to the boundary layer causing clinopyroxene saturation. Compositional profiles through the solvent and the boundary layer for a number of experiments demonstrate rapid diffusion of cations across the boundary layer – solvent interface. SiO2 diffuses outward from the boundary layer whereas CaO and Al2O3 diffuse toward the Si-enriched boundary layer melt. The rate of Al diffusion is slower under reducing conditions compared to the rates in experiments performed in air. Concentrations of FeO and MgO in the boundary layer and solvent are approximately equal indicating rapid diffusion and attainment of equilibrium despite ongoing crystallisation of clinopyroxene within the boundary layer. The behaviour of Na2O and K2O is strongly affected by f O2. Under reducing conditions Na2O and K2O concentrations are approximately equal in the boundary layer and solvent indicating normal diffusion down the concentration gradient and attainment of equilibrium. Under oxidising conditions, K2O and to a lesser extent Na2O, have compositional profiles indicative of uphill diffusion likely due to their preference for more polymerised Si- and Al-rich melts. Under reduced conditions Al-enrichment in the boundary layer melt is not as extreme and uphill diffusion did not occur. The composition of the solvent melt after the experiments indicates that it was contaminated by the boundary layer by convective mixing due to the onset of hydrodynamic instabilities brought on by density and viscosity contrasts between the two melts. Despite using a wide variety of solvent melt compositions we find that the boundary layer melts converge toward a common composition at high SiO2 contents. The composition of glass generated by orthopyroxene dissolution at 1 atmosphere is similar in many respects to Si-rich glass found in many orthopyroxene-rich mantle xenoliths that have been attributed to high pressure in situ processes including mantle metasomatism. The results of this study suggest that at least some Si-rich melts are likely to have formed by dissolution of xenolith orthopyroxene at low pressure possibly by their Si-undersaturated host magmas. Received: 30 August 1996 / Accepted: 15 April 1998  相似文献   

19.
The shear viscosities and 1 bar heat capacities of glasses and melts along the 67mol% silica isopleth in the system SiO2-Al2O3-Na2O-TiO2 have been determined in the temperature ranges 780-1140 K and 305-1090 K respectively. Anomalous behaviour of both these properties is observed for compositions rich in TiO2 and/or Al2O3, an observation attributed to liquid-liquid phase separation followed by anatase crystallization. For samples which do not show anomalous behaviour, it is found that the partial molar heat capacity of the TiO2 component previously determined in Al-free compositions reproduces our heat capacities to within 1.3%. Viscosity data show that addition of TiO2 tends to increase viscosity and melt fragility at constant temperature. Furthermore, heat capacity and viscosity data may be combined within the framework of the Adam-Gibbs theory to extract values of the configurational entropy of the liquids and qualitative estimates of the variation of the average energy barrier to viscous flow. Configurational entropy at 900K is inferred to decrease upon addition of TiO2, in contrast to previous results from Al-free systems. The compositional limit separating normal from anomalous behaviour, as well as the data for homogenous melts have been used to constrain the structural role of Ti in these samples. Our data are consistent with a majority of Ti in five-fold coordination associated with a titanyl bond, in agreement with previous spectroscopic studies. Furthermore, we find no evidence for a Ti-Al interaction in our samples, and we are led to the conclusion that Al and Ti are incompletely mixed, a hypothesis consistent with the observed reduction of configurational entropy upon addition of TiO2, suggesting an important role of medium range order in controlling the variations in thermodynamic properties.  相似文献   

20.
The effect of pressure and composition on the viscosity of both anhydrous and hydrous andesitic melts was studied in the viscosity range of 108 to 1011.5 Pa · s using parallel plate viscometry. The pressure dependence of the viscosity of three synthetic, iron-free liquids (andesite analogs) containing 0.0, 1.06, and 1.96 wt.% H2O, respectively, was measured from 100 to 300 MPa using a high-P-T viscometer. These results, combined with those from Richet et al. (1996), indicate that viscosities of anhydrous andesitic melts are independent of pressure, whereas viscosities of hydrous melts slightly increase with increasing pressure. This trend is consistent with an increased degree of depolymerization in the hydrous melts. Compositional effects on the viscosity were studied by comparing iron-free and iron-bearing compositions with similar degrees of depolymerization. During experiments at atmospheric and at elevated pressures (100 to 300 MPa), the viscosity of iron-bearing anhydrous melts preequilibrated in air continuously increased, and the samples became paramagnetic. Analysis of these samples by transmission electron microscopy showed a homogeneous distribution of crystals (probably magnetite) with sizes in the range of 10 to 50 nm. No significant difference in the volume fractions of crystals was found in samples after annealing for 170 to 830 min at temperatures ranging from 970 to 1122 K. An iron-bearing andesite containing 1.88 wt.% H2O, which was synthesized at intrinsic fO2 conditions in an internally heated pressure vessel, showed a similar viscosity behavior as the anhydrous melts. The continuous increase in viscosity at a constant temperature is attributed to changes of the melt structure due to exsolution of iron-rich phases. By extrapolating the time evolution of viscosity down to the time at which the run temperature was reached, for both the anhydrous (at 1055 K) and the hydrous (at 860 K) iron-bearing andesite, the viscosity is 0.7 log units lower than predicted by the model of Richet et al. (1996). This may be explained by differences in structural properties of Fe2+ and Fe3+ and their substitutes Mg2+, Ca2+, and Al3+, which were used in the analogue composition.The effect of iron redox state on the viscosity of anhydrous, synthetic andesite melts was studied at ambient pressure using a dilatometer. Reduced iron-bearing samples were produced by annealing melts in graphite crucibles in an Ar/CO atmosphere for different run times. In contrast to the oxidized sample, no variation of viscosity with time and no exsolution of iron oxide phases was observed for the most reduced glasses. This indicates that trivalent iron promotes the exsolution of iron oxide in supercooled melts. With decreasing Fe3+/ΣFe ratio from 0.58 to 0.34, the viscosity decreases by ∼1.6 log units in the investigated temperature range between 964 and 1098 K. A more reduced glass with Fe3+/ΣFe = 0.21 showed no additional decrease in viscosity. Our conclusion from these results is that the viscosity of natural melts may be largely overestimated when using data obtained from samples synthesized in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号