首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A two-dimensional, vertically integrated, nonlinear numerical model was applied to investigate the tide-driven bed load transport of sediments and morphodynamics in the shallow coastal lagoon of Yavaros, located in the southeastern part of the Gulf of California, Mexico. Satellite imagery exposes strong sediment dynamics in this coastal region. The dynamics in the lagoon were forced by 13 tidal constituents at the open boundary. Tides are of a mixed character and they are predominantly semidiurnal. The calculations showed areas of intense tidal currents and considerable water exchange with the Gulf of California. Numerical experiments revealed an ebb-dominant tidal distortion and a net export of sediment from the lagoon to the Gulf of California. A simulation of 20 years showed that the lagoon exported about 1,600 m3 of sediment; however, the daily oscillating exchange of sediment reached values of around 8 m3. The daily averaged flux of export–import sediments oscillates principally with semiannual, monthly and fortnightly periods. By applying a threshold velocity, a variable friction coefficient and the calculated amplitude of tidal velocities, it was possible to determine that morphological changes occur in zones of sharp topographic gradients and to explain the effect of friction on the export–import process of sediments. A 10-year simulation revealed that accumulation of sediment (~20 cm) occurred in small areas, whereas erosion occurred in larger areas but with less intensity (~8 cm). Besides the importance for the morphodynamics, these kinds of erosion–accretion processes may be relevant for the marine ecology.  相似文献   

2.
Geoelectrical survey was carried out in the western delta region of River Vasista Godavari, Andhra Pradesh, India, for delineation of groundwater prospective zones due to acute shortage of water supply for various purposes. Forty-six vertical electrical soundings (VES) were done, employing the Schlumberger configuration with a maximum AB/2 of 160 m. The interpreted results of VES show four to five layers with variable thicknesses, such as topsoil zone (1.5–3 m), clay zone (0.84–32 m), finer sand zone (2–72 m), medium to coarse sand zone (4 to 28.8 m) and clay zone (1.2–∞ m), indicating a multi-aquifer system. These results are corroborated with the known lithologs of the study area. Further, the resistivity is also compared with electrical conductivity (EC) of groundwater observed nearby shallow wells representing buried channel (BC), flood plain (FP) and coastal (C) zones, which indicate slightly brackish to brackish water (EC: 1470–6010 µS/cm), whereas the groundwater observed from deep wells shows the fresh (EC: 726–1380 µS/cm), fresh to brackish (EC: 1010 to 3250 µS/cm), and brackish water (EC: 3020 to 4170 µS/cm) located in BC, FP and C zones, respectively. This survey reveals the prospective aquifer zones with potable water at VES locations of 4–6, 8, 10, 11, 14, 16–28, 33–36, 39 and 42–44, where the resistivity values vary from 10 to 40 Ω m. The slightly brackish and brackish water zones are also observed from the resistivity of less than 10 Ω m at shallow depth in BC (VES-22, 37, 38 and 46), FP (VES-1, 2, 7, 29, 30 and 40) and C (VES-3, 4, 9, 12, 13, 15, 31, 32, 41 and 45) zones. As a result, the present investigation has delineated the freshwater zones at shallow (<?12 m) and also at deeper depths (30–45 m) as prospective areas, where BC zone occurs. Freshwater pockets also identified in FP (VES-8 and 39) and C (VES-11, 14 and 15) zones. Thus, this study helps to solve the drinking and irrigation water problems.  相似文献   

3.
Geomagnetic variation observations in the Carpathian region gave the data for tracing the axis of a 1200 km long Carpatian electrical conductivity anomaly (CA) and estimation of its integral longitudinal conductivity (~2 × 108 S × m). We made also 35 magnetotelluric soundings (MTS) in the south-east part of the Ukrainian Carpathians. The shape of MTS curves regularly changes from south-west to north-east forming 6 zones of identical behaviour. Most interesting MTS curves are above the CA. The longitudinal curves define the CA at a depth of 10 km; the transverse ones are not sensitive to crustal CA but they define a mantle conductor at a depth of 100–200 km with conductance ~5000 S which can be identified with the asthenosphere. The principal crustal conductors manifested by MTS data in Carpatians are CA subducting in south-west direction from moderately conductive sediments and a conductive zone of Transcarpathian deep fault. Correlation of electrical conductivity structure with seismicity is discussed.  相似文献   

4.
The groundwater in the karst region of northeastern Vietnam is found in various structural zones such as the Ha Lang, Song Hien, Hon Gai, Song Lo, Song Gam, and Hoang Lien Son Zones, etc. Results from this study show that groundwater in this region is at different depths: ~120 m deep at Quang Ninh, ~100 m at Lang Son, ~80 m at Cao Bang (The most water-abundant depth observed at Cao Bang varies from 40 to 45 m) while it varies from 18–25 to 80 m deep at Quan Ba (Ha Giang), especially at Meo Vac (Ha Giang), where groundwater is observed at 700–800 m deep (equivalent to local base level of the Nho Que River). Overall, groundwater in the region is fresh with total minerals varying from 250 to 400 mg/l; except for the coastal area of Quang Ninh, where groundwater is characterized by much higher total minerals (M = 3–18 g/l) due to the mixing with the saline sea water. The chemistry of water in the region demonstrates that the water is mainly bicarbonate with a [HCO3 ?] concentration varying from 150 to 265 mg/l, pH is of 6.5–8.1, and its hardness is of 3.7–6.0 meq/l.  相似文献   

5.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

6.
Long-period natural-source electromagnetic data have been recorded using portable three-component magnetometers at 39 sites in 1998 and 2002 across the southern Eyre Peninsula, South Australia that forms part of the Gawler Craton. Site spacing was of order 5 km, but reduced to 1 km or less near known geological boundaries, with a total survey length of approximately 50 km. A profile trending east – west was inverted for a 2D electrical resistivity model to a depth of 20 km across the southern Eyre Peninsula. The main features from the models are: (i) on the eastern side of the Gawler Craton, the Donington Suite granitoids to the east of the Kalinjala Shear Zone are resistive (>1000 Ωm); (ii) the boundary between the Donington Suite granitoids and the Archaean Sleaford Complex, which has much lower resistivity of 10 – 100 Ωm, is almost vertical in the top 10 km and dips slightly westwards; and (iii) two very low resistivity (<1 Ωm) arcuate zones in the top 3 km of Hutchison Group sediments correlate with banded iron-formations, and are probably related to biogenic-origin graphite deposits concentrated in fold hinges. Such features suggest an extensional regime during the time period 2.00 – 1.85 Ga. We suggest that the resistivity boundary between the Donington Suite and the Archaean Sleaford Complex represents a growth fault, typical for rift systems that evolve into a half-graben structure. In the graben basin, low-resistivity shallow-marine Hutchison Group sediments were deposited. Folding of the sediments during the Kimban Orogeny between 1.74 and 1.70 Ga has led to migration of graphite to the fold hinges resulting in linear zones of very low resistivity that correlate with banded iron-formation magnetic anomalies.  相似文献   

7.
A geophysical and geochemical study was carried out in the Maneadero aquifer, Baja California, Mexico, with the aim of identifying potential recharge locations for reclaimed water (RW). This coastal aquifer shows a significant decline in water quality, both as a result of salinization and the pollution by nitrates. Total dissolved solids (TDS) in an extreme case increased from 4 g l?1 in 2000 to 27 g l?1 in 2011. Nitrate as N–NO3, reaches 46 mg l?1. Based on their geochemistry and location, four water-quality zones are identified: (a) fresh water with TDS ≈ 1 g l?1 in the upper creeks, (b) mixture between seawater and freshwater in the coast-proximal sections, (c) water significantly enriched in nitrate below and adjacent to the town of Maneadero, and (d) brackish water with no signs of current interaction with freshwater. The 3D geophysics identifies the influence of modern recharge areas and also buried flow-paths down to at least 30 m depth. The locations best suitable for aquifer recharge are those with equal or higher TDS concentrations (>2.5 g l?1) than RW, which are located at the brackish water zone and/or at the coastal limits of the mixing zones.  相似文献   

8.
Modeling resistivity profiles, especially from hard rock areas, is of specific relevance for groundwater exploration. A method based on Bayesian neural network (BNN) theory using a Hybrid Monte Carlo (HMC) simulation scheme is applied to model and interpret direct current vertical electrical sounding measurements from 28 locations around the Malvan region, in the Sindhudurg district, southwest India. The modeling procedure revolves around optimizing the objective function using the HMC based sampling technique which is followed by updating each trajectory by integrating the Hamiltonian differential equations via a second order leapfrog discretization scheme. The inversion results suggest a high resistivity structure in the north-western part of the area, which correlates well with the presence of laterites. In the south-western part, a very high conductive zone is observed near the coast indicating an extensive influence of saltwater intrusion. Our results also show that the effect of intrusion of saline water diminishes from the south-western part to the north-eastern part of the region. Two dimensional modeling of four resistivity profiles shows that the groundwater flow is partly controlled by existing lineaments, fractures, and major joints. Groundwater occurs at a weathered/semi-weathered layer of laterite/clayey sand and the interface of overburden and crystalline basement. The presence of conduits is identified at a depth between 10 and 15 m along the Dhamapur–Kudal and Parule–Oros profiles, which seems to be potential zone for groundwater exploration. The NW–SE trending major lineaments and its criss-cross sections are indentified from the apparent and true resistivity surface map. The pseudo-section at different depths in the western part of the area, near Parule, shows extensive influence of saltwater intrusion and its impact reaching up to a depth of 50 m from the surface along the coastal area. Further, the deduced true electrical resistivity section against depth correlates well with available borehole lithology in the area. Present analyses suggest that HMC-based BNN method is robust for modeling resistivity data especially in hard rock terrains. These results are useful for interpreting fractures, major joints, and lineaments and crystalline basement rock and also for constraining the higher dimensional models.  相似文献   

9.
The spatial distribution and geoaccumulation indices of four heavy metals were investigated in very shallow marine sediments of southwestern Spain. Surface sediments were collected from 43 sites with water depth ranging from 3 to 20 m. High to very high pollution levels (I geo > 4 for zinc, lead and copper) were detected near the end of the Huelva bank, whereas chromium shows a more hazardous distribution in the southwestern Spanish littoral. Low to moderate heavy metal contents (mainly zinc and lead) were also observed in other two areas at different water depths (Isla Cristina-Piedras River: 10–18 m water depth; Mazagón–Matalascañas: <10 m water depth), whereas unpolluted to moderately polluted sediments were detected in the very shallow zones (<8 m water depth) located between the mouths of the Guadiana and the Piedras Rivers. A regional scenario indicates a strong pollution of the adjacent marine areas by polluted inputs derived from the Tinto–Odiel rivers, with a partial transport of heavy metals by W–E littoral currents even 40 km eastward. The Guadiana River is an additional source of zinc–lead contamination near the Spanish–Portuguese border, mainly at water depths up to 10 m. All these rivers are affected by acid mine drainage processes, derived from millennial mining activities. This pollution affects the sediment quality even 40 km eastward.  相似文献   

10.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

11.
Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30–140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl? 200 mg/l, N03 ?35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.  相似文献   

12.
The study area is located in the southern part of Sinai Peninsula. This study was done to delineate the subsurface structure of the basement rocks affecting the groundwater potentiality in the study area and to perform the lateral and vertical variations in the subsurface lithologic properties. To achieve these, a high-resolution total intensity magnetic map and geo-electrical survey were acquired. Two-dimensional power spectrum, analytical signal, and Euler deconvolution techniques are applied on magnetic data. The geo-electric data interpretations concluded that, the study area can be classified into five units of sediments arranged as: (1) the top surficial layer of dry sand and gravels; (2) the second layer of silty sand layer with thickness ranging from 5 to 35 m; (3) the third layer of dry sand with thickness ranging from 5 to 130 m; (4) the fourth layer composed of saturated sand which was considered as the water-bearing zone of the investigated interval, its thickness ranges between 50m and more than 200 m; (5) the fifth layer is interpreted as basement rocks. The depth to the basement surface has an average value of 156 m at the eastern side and 758 m at the western side of the study area. This area is characterized by a graben structure bounded by major faults striking in the NW–SE direction and is considered one of the most promising regions for water resources in Sinai.  相似文献   

13.
Analysis of high-resolution multibeam bathymetry and seismic profiles in the Noggin Passage region, north-eastern Australia, has identified a small area (Noggin block) in the upper-slope offshore Cairns that may potentially collapse and generate a tsunami wave. The Noggin block extends from 340 to 470 m depth covering a roughly circular (2.4 km long and 3.7 km wide) area of about 5.3 km2. The well-defined margins of the block correspond to different bounding seabed features. These features include steep headscarps, small landslides and a group of aligned circular pockforms up to 500 m wide and 20 m deep. Slope stability simulations indicate that the Noggin block is stable under normal present-day gravitational conditions on the upper slope. However, block failure may result under external loads, such as those produced by earthquakes. Failure modelling shows that critical peak horizontal accelerations of 0.2–0.4 g could lead to the collapse of the Noggin block. In north-eastern Australia, these acceleration values would involve earthquakes generated at short hypocentral distances and short periods. The collapse of the potential sediment slide mass of about 0.86 km3 (162 m average thickness) may lead to the formation of a landslide-generated tsunami wave. Semi-empirical equations indicate the collapse of this mass would yield a 7–11-m high three-dimensional tsunami wave. These waves could reach an estimated run-up height at the coast of 5–7 m. Our first-order approach highlights the potential consequences for nearby coastal communities, the need for better sediment characterisation in the study area, and the systematic identification of other areas prone to slope failures along the Great Barrier Reef margin.  相似文献   

14.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

15.
The study area is a part of central Ganga Plain which lies within the interfluve of Hindon and Yamuna rivers and covers an area of approximately 1,345 km2. Hydrogeologically, Quaternary alluvium hosts the major aquifers. A fence diagram reveals the occurrence of a single aquifer to a depth of 126 m below ground level which is intercalated by sub-regional clay beds. The depth to water level ranges from 9.55 to 28.96 m below ground level. The general groundwater flow direction is northwest to southeast. Groundwater is the major source of water supply for agricultural, domestic, and industrial uses. The overuse of groundwater has resulted in the depletion of water and also quality deterioration in certain parts of the area. This has become the basis for the preparation of a groundwater vulnerability map in relation to contamination. The vulnerability of groundwater to contamination was assessed using the modified DRASTIC-LU model. The parameters like depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity of the aquifer, and land use pattern were considered for the preparation of a groundwater vulnerability map. The DRASTIC-LU index is computed as the sum of the products of weights and rating assigned to each of the inputs considered. The DRASTIC-LU index ranges from 158 to 190, and is classified into four categories, i.e., <160, 160–170, 170–180, and >180, corresponding to low, medium, high, and very high vulnerability zones, respectively. Using this classification, a groundwater vulnerability potential map was generated which shows that 2 % of the area falls in the low vulnerable zone, 38 % falls in the medium vulnerable zone, and 49 % of the area falls in the high vulnerable zone. About 11 % of the study area falls in the very high vulnerability zone. The groundwater vulnerability map can be used as an effective preliminary tool for the planning, policy, and operational levels of the decision-making process concerning groundwater management and protection.  相似文献   

16.
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering.  相似文献   

17.
The current study aimed to evaluate hydrogeologically the Nubian sandstone aquifer in El-Bahariya Oasis. It represents the main water-bearing horizon in the study area and consists of continental elastic sediments, mainly sandstone alternating with shale and clays. The general flow lines are directed from SW to NE direction, as detected from the constructed potentiometric head contour map. The piezometric surface reaches 149 m in El-Heiz area at the southern part, while it reaches 90 m at the northern, reflecting higher pressure head of the aquifer in the southern part. The map also illustrates that the southern part is considered as the most promising location for development. The structural elements play an important role in the deposition and distribution of the sedimentary succession of the Nubian sandstone sediments. Consequently, this sedimentary pattern affects the occurrences and movements of the groundwater within the aquifer system. Along the structurally high areas, in the study area, the piezometric head increases, while the reverse is recorded along the structurally low areas. The step-drawdown tests data were carried out by calculating the aquifer loss coefficient (B) and the well loss constant (C). The B values are smaller compared with C values, indicating that the aquifer under pressure has a behavior of leaky aquifer; therefore, it shows hydraulic connection with surrounding formation. The values of well efficiency range from 78.50% to 87.76%. Analysis of 12 pumping test data (constant discharge tests) was carried out in order to calculate the Nubian aquifer hydraulic parameters (transmissivity, hydraulic conductivity, and storage coefficient). The transmissivity values decrease from 3,045 m2/day in the southern part (El-Heiz area) to 236 m2/day in the northeastern part (El-Harra area). Accordingly, the aquifer classified as a high to moderate potentiality. Transmissivity contour map observes gradual increase of transmissivity values from the southern to northeastern direction. This may be due to the increase of shale or clay content in the concerned aquifer in that direction. The storage coefficient values range between 1.04 × 10?4 and 5.22 × 10?3, as obtained from the results of pumping test analysis, which ensure that the Nubian sandstone aquifer is classified as semi-confined to confined aquifer type. The S values show a decrease from southwest to northeast direction as detected from S-map. The hydraulic conductivity values vary from to 0.46 m/day in the northern part to 10.88 m/day in the southern part with an average of 5.67 m/day. According to the classification based on K values, the aquifer is mainly composed of coarse sand.  相似文献   

18.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

19.
Inflow data from 23 tunnels and galleries, 136 km in length and located in the Aar and Gotthard massifs of the Swiss Alps, have been analyzed with the objective (1) to understand the 3-dimensional spatial distribution of groundwater flow in crystalline basement rocks, (2) to assess the dependency of tunnel inflow rate on depth, tectonic overprint, and lithology, and (3) to derive the distribution of fracture transmissivity and effective hydraulic conductivity at the 100-m scale. Brittle tectonic overprint is shown to be the principal parameter regulating inflow rate and dominates over depth and lithology. The highest early time inflow rate is 1,300 l/s and has been reported from a shallow hydropower gallery intersecting a 200-m wide cataclastic fault zone. The derived lognormal transmissivity distribution is based on 1,361 tunnel intervals with a length of 100 m. Such interval transmissivities range between 10?9 and 10?1 m2/s within the first 200–400 m of depth and between 10?9 and 10?4 m2/s in the depth interval of 400–1,500 m below ground surface. Outside brittle fault zones, a trend of decreasing transmissivity/hydraulic conductivity with increasing depth is observed for some schistous and gneissic geological units, whereas no trend is identified for the granitic units.  相似文献   

20.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号