首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
地震目录最小完整性震级Mc的研究,可为地震活动性分析和地震危险性评价提供基础参考。以江西地区地震目录为基础资料,利用震级-序号法、最大曲率法(MAXC)、拟合度分别为90%和95%的拟合优度法(GFT),对江西地区地震目录最小完整性震级Mc的分析结果表明,随着江西测震台网的升级改造,江西地区地震监测能力逐步提高。2007年"十五"台网运行后Mc稳定在左右。另外,利用R-S检验方法分别对赣北、赣中、赣南地区进行Mc分析,得出赣北和赣南的Mc分别为和,而赣中地区因地震数过少难以定论。  相似文献   

2.
中强地震余震序列地震目录编目是否完备、 震源参数是否准确,直接影响余震序列特征分析、 震后趋势快速判断和强余震预测等研究结果的科学性和可靠性. 2013年7月22日甘肃岷县-漳县MS6.6地震余震序列目录中存在较多单台记录地震事件,地震观测报告仅给出其震级,而未给出震中位置. 由于余震波形间的相互交叠干扰,使得余震最大振幅的测量误差较大,造成地震观测报告给出的单台事件震级误差较大. 精确估计单台记录地震事件的震中和震级,能够补充完善现有地震目录,提高地震目录的完备性. 本文对单台记录地震事件震中和震级的估计不仅限于单个台站,而是通过分析区域台网中多个台站的波形记录实现. 首先以余震序列中震级较大、 波形记录信噪比较高的地震波形作为模板,使用波形互相关震相检测技术,检测单台记录的地震事件在多个台站的震相到时. 如果能在4个以上台站检测到震相,则利用测震台网常用的HYPOSAT方法估计其震中位置,并利用多个台站记录波形与模板地震的振幅比估计其震级. 之后计算主震发生后不同时间的最小完备性震级,并通过线性拟合得到最小完备性震级随时间变化的表达式,以分析此地震余震序列的目录完备性. 经过计算共得到253个单台记录地震事件的震级和其中177个事件的震中位置,其震中空间分布范围与余震序列中其它地震分布范围基本一致. 震级复测以及与人工拾取震相到时误差对比表明,该方法所得震相检测和震级估计结果具有较好的可靠性. 主震及最大余震发生后的短时间内,有较多数量单台事件的目录所给出的震级偏低,分析认为可能受主震与较大余震后续震相以及余震间相互干扰所致. 主震发生0.02—0.3天内,其余震序列最小完备性震级随时间的对数呈线性下降,在0.3天后最小完备性震级稳定在ML1.1左右.   相似文献   

3.
甘肃测震台网监测能力及地震目录完整性分析   总被引:12,自引:1,他引:11       下载免费PDF全文
区域地震台网监测能力的科学评估,是进行区域地震活动性和地震危险性分析的重要基础,最小完整性震级Mc是表征台网监测能力的关键.本文以甘肃测震台网的地震观测报告和区域地震目录为基础资料,分析了甘肃及邻区地震监测能力在时、空上的分布特征,利用ldquo;震级 序号rdquo;法、ldquo;最大曲率rdquo;法(MAXC)、拟合度分别为90%和95%的拟合优度检验法(GFT)及ldquo;完整性震级范围rdquo;法(EMR)等,研究了甘肃区域地震目录最小完整性震级Mc的时、空分布特征.结果表明,1980年以来甘肃测震台网的地震监测能力得到了逐步提高,模拟记录时期和ldquo;九五rdquo;期间甘东南地区的地震监测能力明显高于祁连山地震带中西段,ldquo;十五rdquo;测震台网运行后,甘肃及邻区的地震监测能力的空间差异明显缩小.最小完整性震级Mc和监测能力的时空分布特征具有较好的一致性.随着台网的改造,Mc逐步降低,ldquo;十五rdquo;台网运行后,甘肃及邻区的ML1.8以上地震基本完整.此外,还讨论了相关技术规范对区域台网地震目录的影响,并且提出了消除该影响的科学途径和有效方法.该研究结果可为甘肃及邻区地震活动性分析和地震危险性评价等相关研究提供参考.   相似文献   

4.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

5.
以内蒙古中部的呼和浩特-包头地区(40°~42°N,108°~114°E)作为研究区域,收集整理2001年1月1日至2010年4月30日ML≥1.0地震作为研究对象,按地震样本数目滑动扫描并计算最小完整性震级Mc,绘制Mc的时序变化曲线.分析认为Mc在时间上的变化主要反映台网监测能力和地震活动规律,但台站布局、地震信噪比和人为因素也会引起Mc的短期或不连续性的变化.同时在Rydelek等提出的2个假设条件下,对呼包地区的地震目录完整性进行了RS检验,其结果与上述扫描计算结果一致,也与根据台网监测能力所得到的震级范围吻合,证明本文的计算结果能够比较真实的反映2001年以来呼包地区地震目录在各时段内的完整性.  相似文献   

6.
中强地震发生后,地震检测因受到尾波的干扰可能会遗漏部分微震事件,影响地震目录的完备性。文章利用波形模板匹配方法对2020年新疆伽师MS6.4地震序列开展微震检测,相比原始的中国地震台网中心统一地震目录,新检测出1 756个微震事件,地震数量增加了1.3倍。基于检测后的余震目录计算最小完备震级为ML1.2,地震活动性b值为0.76,较原始目录的ML1.6和0.77均有所降低。通过伽师震源区地震序列活动特征分析,结果表明前震序列在主震前短时间内(前36小时)出现地震活动的密集增强,相应的b值显示为低值;主震发生后地震序列完备震级较高,随着时间的推移,完备震级缓慢降低并趋于稳定,并且呈周期性的波动。本研究提高了伽师震源区地震目录的完备性,为精细化描述该地区地震序列时空演化特征提供了关键数据基础。  相似文献   

7.
基于概率完备震级评估首都圈地震台网检测能力   总被引:7,自引:3,他引:4       下载免费PDF全文
完备震级是评估区域地震台网检测能力的一个定量指标,本文采用能反映区域地震台网检测能力的时空分布细节特征的概率完备震级分析方法,对首都圈地震台网的检测能力进行了研究,通过对首都圈2002-2009共8年的地震目录和台站资料的分析处理,得到了首都圈地震台网的完备震级时空分布,据此对台网的检测能力进行了评估,并结合模拟结果探讨了提升台网检测能力的可能性.结果表明:首都圈地震台网的整体检测能力较强,北京地区的检测能力尤其突出,但部分区域检测能力仍有一定的提升空间;模拟结果表明,在东北、西北、西南等位置增加台站可能有助于进一步提高台网的检测能力.相关研究结果可能对未来首都圈地震台网的优化具有参考意义.  相似文献   

8.
使用中国地震台网1970—2022年赤峰—通辽地区(116°—124°E,41°—46°N)地震目录,分别采用最大曲率法、拟合度检测法和震级—序号法计算研究区域不同时间段最小完整性震级Mc,计算结果基本相互吻合。在地震事件较少的情况下拟合度检测法结果偏大,最大曲率法计算结果整体看要小于其他两种方法。  相似文献   

9.
在地震震级国家标准《地震震级的规定》(GB17740—2017)发布以后,收集整理鹤岗地震台2018年1月—2020年3月测定的远震面波震级M_(S(HEG)),与中国地震台网中心地震目录中给定的面波震级M_(S(CENC))进行比较,统计二者偏差值。利用统计学方法,分析震级偏差与震级、震中距和反方位角的关系。结果表明:与中国地震台网中心地震目录发布震级相比,鹤岗地震台测定的面波震级偏高,且震级偏差与震中距表现为正相关性;震中位于鹤岗地震台站西北方位,震级偏差较小,而在其他方位,震级偏差则较大。  相似文献   

10.
陕西区域地震目录最小完整性震级研究   总被引:3,自引:0,他引:3  
本文根据陕西测震台网地震目录和地震观测报告等资料,利用基于G-R关系基础上的EMR法,对1970年以来陕西区域地震目录最小完整性震级Mc的时空展布进行了研究。结果表明:模拟观测阶段(1970—2001年9月),ML2.1级以上地震基本完整;在地震台站数字化阶段(2001年10月—2013年4月),最小完整性震级为ML1.6。从时间尺度上看,陕西地区的地震监测能力在逐步提高。同时还分析研究了陕西地区最小完整性震级的空间分布情况,结果表明陕西北部地区Mc无法计算(缺震),中部较南部偏低。  相似文献   

11.
针对“时空传染型余震序列”(英文简称ETAS)模型在地震序列参数的早期特征和余震短期概率预测研究中的应用问题,重点考察了不同截止震级Mc选取对结果的影响.以甘肃岷县—漳县6.6级地震序列的震后1.677天内的早期阶段为例,考察了ETAS模型和修正的Omori-Utsu公式的适用性问题,发现ETAS模型AIC值在各截止震级Mc下均小于修正的Omori-Utsu公式的结果,表明其适用效果更好.设定Mc=ML1.0,1.1,…,2.5,分别考察了ETAS模型中α值和p值的稳定性,并与2013年芦山7.0级地震序列进行了对比.结果表明,Mc对α值的影响相对较小,p值影响较大.此外,对基于ETAS模型和“瘦化算法”的余震短期概率预测结果进行了N-test检验,结果表明Mc的设定对余震短期概率预测影响较大,对甘肃岷县—漳县6.6级地震,仅当Mc=ML1.0或ML1.1时可获得较好的预测结果.由此,在真正的“向前”的预测实践中,需要首先考察不同的Mc下的余震预测效果.  相似文献   

12.
地震目录是地震监测预报、地震活动性等研究的重要资料.川滇地震科学实验场地区近几十年来积累了大量的地震记录,为实验场的地震科学研究提供了宝贵的数据.地震台网密度和仪器观测精度是逐步提高的,不同时期地震目录的完整性存在差异,因此进行现代仪器观测记录的地震目录最小完整性震级(MC,Magnitude of Completeness)分析,对正确研究和认识该地区地震活动规律及其影响因素等具有重要意义.本文采用震级—序号方法、最大曲率法(MAXC,Maximum Curvature)和拟合度检测法(GFT,Goodness-of-Fit Test)分析了川滇地震科学实验场地区1970—2018年地震目录的最小完整性震级MC值,得到了实验场地区及其内部各地震区(带)MC值的时间演化特征和空间分布特征.结果表明,实验场地区及其内部各地震区(带)MC值变化趋势大致为1970—1986年ML2.0~2.6,1987—1999年ML2.5~2.6,2000—2008年后ML1.4~2.1,2009—2018年ML1.2~1.9;实验场地区MC值的空间分布大致呈现东北部和西南部较低、西北部和东南部较高的特征,其中云南最南端的澜沧—耿马区和思普区、四川西北部的理塘—木里区以及川藏交界处的金沙江带MC值普遍较高,云南北部和四川南部的松潘—龙门山带、安宁河带、元谋区、楚雄—建水带和大理—丽江—盐源区MC值普遍较低;强震会使MC值出现突然升高、之后逐渐恢复的现象,其中MC值升高程度与震级有一定相关性,并且强震导致的MC值升高是MC值空间和时间分布不均匀的原因之一.  相似文献   

13.
中国目前实行的区域地震台网独立运行机制,使得在相邻不同台网的交界地区可能存在多个版本的地震目录和震相观测报告,影响了地震活动性分析与研究.为此,本文提出了一种基于联合概率的方法,可标明两个或多个相邻台网目录中相同的事件,合并它们的震相数据开展重新定位,并重构不同台网交界地区的统一地震目录.该方法的思路与分析步骤是:首先,计算获得不同台网之间具有最小发震时刻差异的两两地震的时空强差异分布,查找并剔除独立地震,计算事件合并的联合概率;其次,基于联合概率分析合并不同台网的地震目录和震相观测报告,对合并事件进行重新定位和定位误差分析,并基于G-R关系检验重构目录的完整性.本文以2014年鲁甸地震序列为例的初步应用结果显示,震相合并之后的地震定位精度相比之前单个台网的结果,特别是相比四川台网的目录,定位精度提高非常显著,合并后的目录与之前相对完整的云南目录接近,但相比由两个台网目录简单拼凑而成的目录更加准确.此外,研究还发现在目录合并过程中,对于4级以上的中强震,应选择MS而不是以ML震级标度;震相合并后被复用台站记录的到时信息可用于检测不同台网间的震相拾取是否存在系统偏差.本文提出的方法使得在相邻不同台网的过渡区形成一个统一且尽可能准确可靠的地震目录成为可能.  相似文献   

14.
为考察2013年4月20日芦山MS7.0地震震后序列参数的早期特征, 利用“传染型余震序列”(ETAS)模型和最大似然法进行了参数估计. 设定截止震级Mc=ML2.0, 拟合时段为震后0.31—24.12天, 计算获得α=1.89, p=1.22, 同时利用最大似然法估计获得b=0.72. 与中国大陆地区其它中强震的余震序列参数的比较表明, 芦山MS7.0地震序列参数表现为触发次级余震的能力较弱和序列衰减速率较快的特征, 反映出余震区相对较高的应力水平. 为检测结果的稳定性, 设定不同的截止震级Mc以及不同的拟合截止时间, 分别进行参数拟合和参数标准差估计. 结果表明, Mc的选取对α值影响明显, 对p值影响则较小. 此外, 震后10天内获得的参数拟合结果随时间变化较为明显, 而其后各参数变化总体较为平稳.   相似文献   

15.
地震预警是地震减灾工作的重要途径,而震级预估是整个地震紧急预警系统中重要且较为困难的一个环节.目前,世界上多个国家和地区都已建立了各自的地震预警系统,并且形成了特征频率(τ_p和τ_c等)相关和特征振幅(Pd等)相关的两类震级紧急预警的方法,但各有局限性.本文在已有的方法和理论基础上,运用机器学习算法,将日本KIK和KNET台网从2015年至2017年所记录到的843条地震目录,55426条记录作为全数据集,设计、训练出一套用于常见震级范围的机器学习震级预估模型.与已有方法的预估结果相比,机器学习方法不仅使预估的整体误差和方差下降,同时多台联合评估单一地震事件的截面方差也更低.本研究的结果显示了机器学习算法在震级紧急预估问题上具有较广阔的应用前景,同时也为较为复杂的深度学习类算法框架下端到端模型提供了实践基础和研究可能.  相似文献   

16.
王亚文  蒋长胜 《地震学报》2017,39(3):315-329
为探讨不同地震台网监测能力评估方法的结果差异性及其原因,本文选用目前国际上比较前沿的“基于概率的完整性震级”(PMC)方法和“完整性震级范围”(EMR)方法,以及中国地震台网常规采用的“震级-最大距离”方法,对2008年10月1日—2015年9月17日南北地震带地区表征地震监测能力的最小完整性震级进行了比较研究.研究中考虑了以往关注不够的地震观测质量一致性问题,统一采用至少3个台站记录的地震资料.结果显示,3种方法的结果差异显著,最小完整性震级的差值在南北地震带个别地区甚至可达ML2.0,其中,PMC方法获得的最小完整性震级Mp值在32°N以北地区显著低于其它两种方法,震级-最大距离方法获得的最小完整性震级Mr低值结果仅与高台站密度地区有关,与包括EMR方法获得的最小完整性震级McEMR相比较在统计均值上则呈McEMR < Mp < Mr.进一步对各地震台站的地震检测能力进行评分,结果显示,台站运维水平和对记录地震分析的完整程度,是造成Mp值显著不同于其它方法结果的主要原因,而是否选用相同的记录台站数量等数据质量约束标准,会造成EMR方法与其它方法结果的显著差异.因此,考虑到地震台网运行的实际情况和不同评估方法的计算原理,推荐PMC方法用于地震监测能力的评估.   相似文献   

17.
China’s seas and adjacent regions are affected by interactions among the Eurasian plate, the western Pacific plate, and the Philippine Sea plate. Both intraplate and plate-edge earthquakes have occurred in these regions and the seismic activities are frequent. The coastal areas of China are economically developed and densely populated. With the development and utilization of marine energy and resources along with the development of national economy, the types and quantity of construction projects in the marine and coastal areas have increased, once an earthquake happens, it will cause huge damage and loss to these areas, therefore, the earthquake-related research for these sea areas cannot be ignored and the need for study on these areas is increasingly urgent. One type of essential basic data for marine seismic research is a complete, unified earthquake catalog, which is an important database for seismotectonics, seismic zoning, earthquake prediction, earthquake prevention, and disaster reduction. Completeness and reliability analysis of an earthquake catalog is one of the fundamental research topics in seismology.
At present, four editions of earthquake catalogs have been officially published in China, as well as the earthquake catalogue compiled in the national fifth-generation earthquake parameter zoning map, these catalogs are based on historical data, seismic survey investigations, and various instrumental observations. However, these catalogs have earlier data deadlines and contain the earthquake records for only the offshore regions of China, which are extensions of coastal land. Distant sea regions, subduction zones, and adjacent sea regions have not been included in these catalogs. Secondly, there were no cross-border areas involved in the compilation of earthquake catalogs in the past. It was not required to use magnitudes measured by other countries’ seismic networks and observation agencies to develop an earthquake catalog with a uniform magnitude scale, moreover, there was no formula suitable for the conversion of magnitude scale in China’s seas areas and adjacent regions. Little research has been conducted to compile and analyze the completeness of a unified earthquake catalog for China’s seas and adjacent regions. Therefore, in this study, we compiled earthquake data from the seismic networks of China and other countries for China’s seas and adjacent regions. The earthquake-monitoring capabilities of different sea areas at different time periods were evaluated, and the temporal and spatial distribution characteristics of epicentral location accuracy for China’s seas and adjacent regions were analyzed. We used the orthogonal regression method to obtain conversion relationships between the surface wave magnitude, body wave magnitude, and moment magnitude for China’s seas and adjacent regions, and established magnitude conversion formulae between the China Seismic Network and the ML magnitude of the Taiwan Seismic Network and the MS magnitude of the Philippine Seismic Network. Finally, we developed an earthquake catalog with uniform magnitude scales for China’s seas and adjacent regions.
On the basis of the frequency-magnitude distribution obtained from the magnitude-cumulative frequency relationship (N-T) and the Gutenberg-Richter(GR)law, we conducted a completeness analysis of the unified earthquake catalog for China’s seas and adjacent regions, Then, we identified the beginning years of each magnitude interval at different focal depth ranges and different seismic zones in the earthquake catalog.
This study marks the first time that a unified earthquake catalog has been compiled for China’s seas and adjacent regions, based on the characteristics of seismicity in the surrounding sea regions, which fills the gap in the compilation of the earthquake catalogue of China’s seas and adjacent areas. The resulting earthquake catalog provides a basis for seismotectonics, seismicity study, and seismic hazard analysis for China’s seas and adjacent regions. The catalog also provides technical support for the preparation of seismic zoning maps as well as for earthquake prevention and disaster reduction in project planning and engineering construction in the sea regions. In addition, by evaluating the earthquake-monitoring capability of the seismic networks in China’s seas and adjacent regions and analyzing the completeness of the compiled unified earthquake catalog, this study provides a scientific reference to improve the earthquake-monitoring capability and optimizing the distribution of the seismic networks in these regions.  相似文献   

18.
震级估算是地震预警系统(EEWs)的核心任务。基于最大卓越周期参数(pmax)的震级估算方法被广泛研究和应用,但pmax计算细节被忽视,导致pmax的震级估算效果存在较大的差异。为此,利用日本的大量井下强震记录,对pmax计算涉及的滤波范围、滤波阶数和平滑系数的设置进行优化,提出了pmax的优化计算方法,即滤波范围选用高通0.001 Hz,滤波阶数为1阶,平滑系数取0.95。利用日本和智利的初至3~6 s P波对比分析优化后的pmax和优化前的pmax以及c的震级估算效果,结果表明:优化后的pmax与震级的相关性和震级估算的误差均好于优化前的pmaxc。本文给出的pmax优化计算方法,可以显著地改善pmax在EEWs中的震级估算效果。  相似文献   

19.
根据2014年云南地区M6.1盈江地震、M6.5鲁甸地震和M6.6景谷地震的主震、余震P波初期部分的信息,研究了地震震级快速估算中3个预警参数(最大卓越周期τpmax、特征周期τc和最大位移幅值Pd)与震级的相关性,提出了云南地区的震级估计模型,并对其进行分析,再和其它地区的震级估计模型进行对比和评价。结果表明:3种方法均能在短时间内(2~4 s)有效地进行震级估算,Pd方法估算效果最优,τc方法次优,τpmax方法较弱。在震级较大的主震震级估计中,3种方法均没有出现明显的震级低估(震级饱和)现象。对于τpmax方法,云南地区的估计模型与南加州地区较为接近,但与四川地区区别较大,可能与该方法的计算稳定性有关;而τc方法的估计模型则与四川及世界其它地区均较为接近,更具有普适性和稳定性。在地震预警系统的实际应用中,由于云南地区尚未建立密集的地震监测台网系统,因此在短时间内难以得到较为准确的震中距。与震源距相独立的τpmax和τc两种算法则显得较为实用,其中:τc方法略优于τpmax方法,同时能较好地满足地震预警系统的精度要求,因此推荐使用τc方法应用于云南地区地震预警系统中的快速震级估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号