首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
地下水超采引发的地面沉降灾害,目前成为影响我国多个重大城市经济可持续发展、城市规划建设及人们日常生活的主要区域性地质灾害,并已引起国内外众多学者的关注,但目前针对城市地面沉降灾害机理的研究多仅从纯数值模拟的角度进行分析,缺少综合多类实测资料从而构建与客观实际更为切合的地下水流模型,获得对地下水超采引发地面沉降机理的深入认知.基于此,本文选取我国地面沉降严重的西安市作为主要研究对象,并针对西安市高新技术开发区近年来越发严重的地面沉降现象,依据Leak夹层理论与太沙基有效应力原理,结合区域地下水与钻孔等实测资料,根据研究区土层结构及地下水流渗透特性将研究区在垂向上划分为5层结构体,构建了该区域较完备的地下水流模型,反演获取了该区域1992—2007年间地表沉降量及其分布特征,并据此分析了抽取地下承压水对区域地表沉降的影响,有效刻画出了研究域地面沉降发展的三个重要时期-快速发展期(1990—1995年)、持续发展期(1996—2001年)、减速期(2002—2008年).最后通过选取典型特征点并利用实测In SAR与GPS监测结果与模型模拟值进行了对比分析,验证了本文模型反演结果的可靠性.本文研究结果可有效弥补区域内其他监测手段数据空白区问题,对于深入理解及预测由于抽取地下承压水导致区域地表沉降具有一定的参考意义.  相似文献   

2.
长江三角洲(南部)区域地面沉降模拟研究   总被引:7,自引:0,他引:7  
查明各土层变形特征是建立区域地面沉降模型的关键, 为此对研究区全部12个土层的变形特征进行全面论述, 并对变形特征与5种地下水位变化模式的关系加以讨论. 范围大、地质条件复杂、所经历的水位变化模式多种多样造成不同土层、不同地点的同一土层和不同阶段同一地点的同一土层都有不同的变形特征. 现有模型难以描述复杂的黏弹塑性本构关系, 为此对Merchant模型进行改造, 在此基础上建立相应的三维变系数水流模型和垂向一维沉降模型, 并讨论2个模型的耦合. 模拟结果良好, 显示所建立的模型确能反映长三角地区1.7×104 km2区域上复杂的地面沉降过程, 可用于预测预报和控制地面沉降方案的制订.  相似文献   

3.
<正>1研究背景沂沭断裂带北段2010—2020年重力变化持续异常,具体是东部累计负变化约-130μGal,西部累计正变化高达247μGal。通过研究该区域水文和垂向形变资料,明确该异常是由地下水位下降、地面沉降所引起,通过数值计算,重力变化中的非构造效应占比> 90%。以地震中长期预报为目的的流动重力观测需要将非构造因素作为干扰排除,但是如果以地下水变化、地面沉降为监测对象,流动重力是否可以作为一种有效或辅助手段?  相似文献   

4.
华北平原沉降地区重力场变化分析   总被引:2,自引:1,他引:2  
华北平原沉降带相对于西部太行山区,近几年观测到的重力值相对1989年同期呈上升状态、其中某些地区累计上升量相当大,比如,沧州地区达143×10~(-8)m/s~2,任丘地区103×10~(-8)m/s~2,巨鹿—南宫为(89—103)×10~(-8)m/s~2.对某些地区的重力变化量进行地下水下降量和地面沉降量校正,其校正量可达到变化量的1/3—1/2.校正后的重力值变化幅度减小,但有些异常依然存在.这种较大的剩余变化量,可能含有两个因素:其一可能与华北平原沉降带的继承性下降及某些地区构造断裂活动有关;其二可能是实际地面沉降量比推测的沉降量大.  相似文献   

5.
井孔水位微动态形成机理的探讨   总被引:8,自引:0,他引:8       下载免费PDF全文
井孔地下水位微动态是地壳附加应力作用下形成的。地壳中产生附加应力的主要因素有地球固体潮、大气压力变动、降雨与地表水体的荷载及断层活动等。井孔水位微动态形成的基本过程是:产生附加应力→含水层变形与孔隙压力变化→含水层—井孔间产生水流运动→井孔水位发生升降。本文从岩土力学与地下水动力学的观点,对于上述过程中的重要环节进行了初步的探讨  相似文献   

6.
华北地区部分井孔稀有气体异常研究   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了近年来华北地区宝龙等 3口井稀有气体的显著异常 ,并据其特征与井孔水位动态的关系 ,对稀有气体异常的成因进行了理论分析与实验研究。结果表明 ,水位下降 10 0mm ,岩层孔隙、裂隙中的气体体积膨胀 0 0 0 90 % (气体体积百分比 ,下同 )左右。由于地下水位大幅度下降 ,岩层孔隙压力减小 ,积聚在岩层孔隙、裂隙中的气体体积膨胀溢出 ,导致井孔地下水中稀有气体含量出现异常变化。这些异常是干扰因素所致 ,不是地震异  相似文献   

7.
西安孕育严重的地面沉降及地裂缝灾害,严重制约着城市的现代化发展,本文采用GPS精密定位和InSAR遥感差分技术对西安地面沉降和地裂缝进行变形监测与分析,获取了西安地面沉降与地裂缝整体变形现状的珍贵信息,通过对这些变形信息的研究分析,揭示了西安现今地面沉降与地裂缝时空演化特征和机理:随着停止或限采地下水,西安地面沉降量级由20世纪90年代中期的最大年沉降速率20~30 cm/a减少到不足10 cm/a,且超过60%的沉降区域的年沉降速率已由90年代中期的5~8 cm/a减少到不足2 cm/a;原有的沉降中心大部分已不存在或大大减小;地裂缝在时空活动与分布上与地面沉降存在明显的关联性;地面沉降和地裂缝随着西安高新区的建设向南、西南、东南逐步扩展.  相似文献   

8.
芦山地震、汶川地震与龙门山地区水汽异常   总被引:2,自引:0,他引:2       下载免费PDF全文
对龙门山地区水汽动态的分析研究表明,在2013年芦山MS7.0地震和2008年汶川MS8.0地震前,龙门山地区大气相对湿度异常频次都出现了先逐年下降,然后快速回升的过程;下降时间较长,10a以上,上升时间较短,1~2a;震中位于异常频次相对下降和上升幅度都是最大的中心或邻近区域。在地震孕育中期阶段发生水汽异常趋势变化的原因可能是由于岩层裂隙的张合、地下流体的运动和地热能的变化,影响地面温度和潜热交换的速度所致。在地震孕育的中长期阶段(10a~几a),地壳岩石受压缩变形,孔隙、裂隙不断闭合或减少,由地下释放的热水、热汽减少,潜热交换速度也随之降低,相对湿度异常频次表现为逐年下降的趋势。在地震孕育的中短期阶段,地壳岩石变形进一步加大,可能导致微破裂不断扩展,由地下释放的热水、热汽由减少转为增加,潜热交换速度由降低转为迅速增加,相对湿度异常频度也表现出由逐年下降转为突发的快速上升。  相似文献   

9.
汶川大地震震后重力变化和形变的黏弹分层模拟   总被引:5,自引:0,他引:5  
基于有限矩形位错理论及陈运泰等、JiChen等通过地震波反演的断层模型,结合研究区地壳——上地幔平均波速分层结构,利用PSGRN/PSCMP软件模拟计算了黏弹分层半空间中汶川地震(Ms8.0)产生的同震及其震后地表形变和重力变化,同时给出了震后形变和重力变化的年变化率.模拟结果表明,同震形变和重力变化显示出发震断层倾滑逆冲兼具右旋走滑综合特征;其变化主要发生于断层在地表的投影区附近,震后地表重力变化和形变量均不断增大,影响的范围也不断扩张;震后50a间近场年均形变量可达10mm,年均重力变化量可达2times;10-8m/s2,而远场年均形变量一般低于2mm,年均重力变化量一般低于0.4times;10-8m/s2;形变和重力变化在震后200a内变化较为显著,变化率逐渐减小,水平位移在400a后基本稳定不变,垂直位移、重力变化和大地水准面变化在800a后基本稳定不变.   相似文献   

10.
邯郸平原区承压地下水长期处于严重超采状态,导致大面积地面沉降,直接威胁到该地区重大基础设施安全.因此,查明地面沉降时空演变特征,厘清承压地下水变化与地面沉降的耦合关系,对预防和治理地面沉降地质灾害具有重要意义.本文利用Sentinel-1A数据进行时间序列分析,获取了2015—2019年邯郸平原区地表形变时空分布结果,并结合水头数据分析了含水系统对水头变化的不同响应.利用谐波函数分离了地表形变及水头变化的季节性变化,并用其估算了邯郸平原区空间差异变化的弹性骨架释水系数;基于顾及弱透水层延迟排水的一维水头变化-形变模型,反演了非弹性骨架释水系数和时间常数.结果表明:(1)邯郸平原区以沉降为主,最大沉降速率可达14 cm·a-1;通过与水头数据对比发现该地区地面沉降主要是由承压含水层水头下降及弱透水层的延迟排水引起.(2)水头的季节性变化引起了明显的季节性形变,沉降区季节性形变幅度可达25 mm,峰值时间为1—3月.(3)邯郸平原区弹性骨架释水系数介于1.51×10-3~4.05×10-3之间,与抽水试验结果较为相符;非弹性...  相似文献   

11.
Simulation of regional land subsidence in the southern Yangtze Delta   总被引:5,自引:0,他引:5  
Investigation of the deformation characteristics of individual hydrostratigraphic units is the key to construct a regional land subsidence model. All of 12 hydrostratigraphic units in the study area were discussed throughout. On the basis of the measured data of groundwater level, five kinds of changing patterns of groundwater level were deduced and the relationship between the deformation characteris-tics of aquifer units and the corresponding changing patterns of groundwater level was discussed. The study area is 1.7×104 km2, where the geological condition is complex. The changing patterns of groundwater level the hydrostratigraphic units have experienced vary from site to site and from time to time. Consequently, the deformation characteristics of units are sophisticated. An identical hydros-tratigraphic unit may exhibit different deformation characteristics, such as elasticity, elasto-plasticity, visco-elasticity, and visco-elasto-plasticity, at different sites or during different periods, not to mention the different units. The existing models are difficult to describe the complex visco-elasto-plastic con-stitutive law under the condition of land subsidence. So the Merchant’s model was modified to depict the visco-elasto-plastic behavior of units. Then a three-dimensional flow model with variable parame-ters and a vertical one-dimensional subsidence model were constructed and coupled. The coupled model was applied in simulating land subsidence in the southern Yangtze Delta and a satisfactory re-sult was obtained. The simulation results show that the new coupled model can depict the complex geological conditions and describe the developing process of land subsidence very well in the south-ern Yangtze Delta. The new model can surely be used to predict land subsidence in the future, which is very helpful to taking measurements to control land subsidence.  相似文献   

12.
Excessive groundwater withdrawal has caused severe land subsidence worldwide. The pore water pressure and the deformation of pumped hydrostratigraphic units are complex. A fully coupled three-dimensional numerical simulation was carried out for different pumping plans in this paper. When groundwater is pumped from a confined aquifer, the great compaction occurs in the pumped aquifer and its upper and lower adjacent aquitard units. Land subsidence is smaller and the area affected by land subsidence is greater when groundwater is pumped from the deeper confined aquifer. The pore water pressure in the pumped confined aquifer changes immediately with pumpage. In the adjacent aquitard units, however, the pore water pressure increases in the early pumping time and decreases in the early recharging time. The decrease in the pore water pressure vertically spreads from the interface between aquitard and pumped aquifer to the other surface of the aquitard. The pumped aquifer compacts and rebounds immediately with pumping and non-pumping or recharging actions, while the compaction and rebounding of the aquitard units clearly lag behind. The compaction of the adjacent aquitard unit first occurs near the interface between aquitard and pumped aquifer units, and the compaction zone spreads outward as the pumping goes on. The aquitards may expand vertically within some zones. Due to the inelastic deformation of soil skeleton, different pumping plans result in different land subsidence. For the same net pumpage, maximal land subsidence and horizontal displacement are the smallest for constant discharge and the greatest for recharge-discharge cycle.  相似文献   

13.
Ground subsidence of detrital deposits in the Almería basin (SE Spain) was studied using the remote sensing technique of Differential Interferometry SAR (DInSAR). This basin is one of the most arid in Europe, receiving an average rainfall of 250 mm per year. Over the last 60 years the region has experienced an enormous agricultural and urban expansion, whose water demand has been largely supplied from groundwater, leading to the current situation of overexploitation of water resources. This paper outlines the likely relationship between groundwater abstraction and subsidence. To this end, 34 ERS and Envisat images, taken between 2003 and 2009, were analysed to estimate ground surface deformations, and hence, compared with water table variations measured in a number of piezometers in the basin. The analysis shows a clear parallelism between the variations in piezometric level and deformation of the ground surface. In addition, the zones of greatest subsidence coincide with those areas where groundwater abstractions are concentrated. Subsidence over the examined period varies from 10 to 30 mm, with extreme values as high as 50 mm, which translates to a rate of between 1·7 and 5 mm/year, reaching maximum rates of 8 mm/year at some points. Given such subsidence rates, damage to urban infrastructures are, for the moment, incipient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Land subsidence basically is the deprivation of water and earth resources, further inducing social and economical undesirable impact. The principal direction of land subsidence prevention is properly management of groundwater. However groundwater management should be developed on the basis of combined technical, economical, social and institutional approaches to management that reflect local conditions and can be adapted and evolved. Therefore, the aim of this paper is to make land subsidence prevention strategies for government to refer. Before year 1969, agriculture was the main land utilization business in Pingtung Plain. Due to intensive development of fish breeding after 1970’s, the aquaculture area along the estuary region of Pingtung Plain have been dramatically increased. Groundwater thus became the main fresh water resource for aquacultural water diluting and flushing because of the insufficiency in surface water supply. The uncontrolled development of groundwater resources has led to undesirable effects, especially in the south where aquaculture is concentrated. These effects are land subsidence, saline water intrusion, lowering of water tables and reductions in well yields. Government stressed on the improvement of breeding technology in the past, which mainly focused on the water quality control in order to raise the culture density, however, it neglected the impact to the environment and quantity control. This paper promotes a reasonable aquacultural water consumption policy aims at finding out the most suitable breeding species considering water consumption and its reasonable breeding area under the premise that it will not depress the original profit of aquatic products trading. Published in Russian in Vodnye Resursy, 2007, published in Vodnye Resursy, 2007, Vol. 34, No. 3, pp. 281–289. The text was submitted by the authors in English.  相似文献   

15.
In the Vietnamese Mekong Delta (VMD), water levels at some stations have increased. However, the factors that cause this rise in the VMD have not been identified. We considered four factors that may have contributed to the water level rise: (1) increased runoff from upstream, (2) sea‐level rise, (3) land subsidence, and (4) decrease in flood mitigation function because of construction of high dykes. We analysed daily maximum and minimum water levels, and mean daily water levels from 24 monitoring stations from 1987 to 2006. Using daily and annual water level differences, we classified the delta into two groups: one is dominated by flows from upstream, while the other is tide dominated. We then tested the trends of annual maximum and minimum water levels using the Mann–Kendall test, and identified the slope of the trend using the method of Sen. The areas of dyke construction were estimated using the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results show (1) river inflow has little impact on rising water levels in the VMD, (2) the influence of high dykes on water level rise could not be quantified in this study, and (3) both maximum and minimum water levels significantly increased in the tide‐dominated area. Trend of annual minimum water level can be considered as the sum sea‐level rise and land subsidence. Therefore, we attribute 6.05 mm year?1 (80%) to land subsidence and 1.42 mm year?1 (20%) to sea level rise, indicating that inundations have been severe in the VMD, caused primarily by land subsidence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater interacts with surface water features nearly in all types of landscapes. Understanding these interactions has practical consequences on the quantity and quality of water in either system, because the depletion or contamination of one of the systems will eventually affect the other one. Many studies have shown that the use of heat as natural tracer in conjunction with water level measurements is an effective method for estimating water flow (fluxes) between groundwater and surface water. A number of studies have explored the effects of spatial and temporal variability of groundwater–surface water flux exchanges using temperature and water level measurements; however, the effect of temporal resolution of water level and temperature data on estimating flux remains unexplored. Therefore, this study investigated the effect of temporal resolution of input data on temporal variation of groundwater–surface water flux exchanges. To this end, we calibrated a variably saturated two‐dimensional groundwater flow and heat transport model (VS2DH) at hourly and daily time scales using temperatures measured at multiple depths below the riverbed of the Zenne River, located at a well‐known Belgian brownfield site. Results of the study showed that the computed water flux through the streambed ranged between ?32 mm/day and +25 mm/day using the hourly model and from ?10 mm/day to ?37 mm/day using the daily model. The hourly model resulted in detecting reversal of flow direction inducing short‐term surface water flow into the streambed. However, such events were not captured if daily temperature and water level measurements were used as input. These findings have important implications for understanding contaminant mass flux and their attenuation in the mixing zone of groundwater and surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
通过D-InSAR技术获取了临汾水准两次巨幅形变异常期间的区域垂直形变场,结果显示:2009年2月20日至2009年10月23日,临汾水准所在的龙祠区域无明显变形,临汾市区南部出现的10~20mm的下沉区域为周边密集分布的多个电厂大量开采地下水所致;2010年1月1日至2010年3月12日,大部分区域变形量基本为零,在临汾盆地内部存在一些小的、空间上不连续分布的沉降区域。幅度约为10mm左右,此类型的沉降区域多与城市发展过程中大规模抽取地下水有关。基于InSAR的结果,表明临汾水准BN,测点的巨幅形变异常在InSAR形变图上无法显示,属于局部地区小范围的变形。  相似文献   

19.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

20.
新泽5井水位趋势下降分析   总被引:2,自引:1,他引:1  
新泽5井水位1997年以来呈趋势下降动态,至2002年底下降幅度达970mm。为解释该趋势下降的原因,首先对深州市及其周边地区地热开采点的空间分布及地下热水开采量进行了详细调查,而后对华北油田采油和注水情况进行了了解。经调查研究表明,新泽5井1997年以来,水位的趋势下降,水位动态年变规律的改变,是井区及附近地区大量开采地下热水引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号