首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2015年12月在马里亚纳海沟"挑战者深渊"进行了定点样品采集,对温度、盐度、溶解氧、pH等环境参数进行了分析,讨论了营养盐的垂直分布特征、各形态营养盐结构特征及影响因素。研究发现,溶解氧在表层具有最大值,在1000 m左右出现极小值,而在8700 m深度具有较高溶解氧值(5.79 mg·L^-1),这可能与富氧水团的存在有关。硝酸盐表层含量较低,在1000和5367 m处出现双峰值。在表层水体中,溶解有机氮、磷是溶解总氮、溶解总磷的主要存在形式,表层以深,溶解无机氮、磷逐渐占据主导地位。磷酸盐表层含量最低,在1000 m处达到最大值,之后随着深度的增加浓度逐渐降低;硅酸盐在表层含量较低,在约4000 m处有最大值161.65μmol·L^-1,在4000 m以深,硅酸盐仍维持较高浓度。结果表明马里亚纳海沟"挑战者深渊"的溶解氧、pH及营养盐的垂直分布特征与大洋环流、海沟形态以及生物活动密切相关。  相似文献   

2.
The influence of a thick layer of oxygen-depleted water (<0.2 ml l−1) on the abundance and distribution of chaetognaths was investigated in the northeastern Arabian Sea (NEAS), a natural oxygen-deficient system in the global ocean. The species and maturity stage-wise distribution of this group were studied at five discrete depths down to 1000 m. A total of 22 species belonging to four genera were observed, and the genus Sagitta dominated, representing 60% (500-1000 m) to 89% (Mixed layer depth) of the total chaetognath population. Based on their vertical distribution limits, four groups were recognised, as follows: I: species abundant in surface water with a maximum distribution limit up to 300 m; II: species confined mainly to deeper waters (>500 m); III: species present throughout the water column (0-1000 m); and IV: species present in most layers, but with a preference for a specific depth stratum. A positive correlation (P<0.01) was observed in the abundance of chaetognaths and their main prey copepods, emphasising the strong trophic relationship between these groups. It was found that the intensely oxygen-deficient waters of the NEAS play a crucial role in the vertical distribution and abundance of chaetognath species of all four genera. This report presents information on the maturity stages and ontogenetic migration of this important planktonic group in relation to the oxygen-depleted water in the study region for the first time. The results obtained are also important for understanding the biological processes associated with a major oxygen minimum zone (OMZ) in the global ocean.  相似文献   

3.
基于2020年夏季的大面航次观测数据,分析了烟台—威海北部海洋牧场及邻近海域海水溶解氧浓度垂向分布最小值(氧最小值层)的空间分布特征,并探讨了影响因素。从6月至8月,海水溶解氧浓度不断减小,垂向结构亦存在显著变化。海水溶解氧浓度垂向分布的最小值主要集中于7月的近岸海域,最小值大致从外海向近岸方向减小,其距离海底高度及与底层溶解氧浓度之差的绝对值均于双岛湾邻近海域为最大。海水溶解氧浓度垂向分布的最小值位于最强密度层结以下。但是海水溶解氧浓度垂向分布最小值的强度向北减小,而密度层结向北增大,两者的空间分布基本相反,说明密度层结抑制垂向湍流扩散可极大减少深层海水溶解氧的来源,是海水溶解氧浓度垂向分布最小值形成的必要条件,但不是主导因素。在海水溶解氧浓度垂向分布的最小值层,表观耗氧量存在垂向分布的最大值,大部分站点的pH存在垂向分布的最小值,说明局地增强、持续的生物地球化学耗氧是控制海水溶解氧浓度垂向分布最小值形成和空间分布的一个重要过程。研究结果表明氧最小值层是夏季烟台—威海北部近岸海水溶解氧垂向结构的典型特征之一。  相似文献   

4.
本文基于常用的统计方法,通过与WOA09观测的海洋溶解氧浓度数据进行比较,定量地评估了9个CMIP5地球系统模式在历史排放试验中海洋溶解氧气候态特征的模拟能力。在海表,由于地球系统模式均能很好地模拟海表温度(SST),模式模拟的海表溶解氧浓度分布与观测一致,模拟结果无论是全球平均浓度偏差还是均方根误差均接近0,空间相关系数与标准偏差接近1。在海洋中层以及深层这些重要水团所在的区域,各模式的模拟能力则差异较大,尤其在溶解氧低值区(OMZs)所在的500m到1000m,各模式均出现全球平均偏差、均方根误差的极大值以及空间相关系数的极小值。在海洋内部,模式偏差的原因比较复杂。经向翻转环流和颗粒有机碳通量均对模式的偏差有贡献。分析结果表明物理场偏差对溶解氧偏差的贡献较大。一些重要水团,比如北大西洋深水,南极底层水以及北太平洋中层水在极大程度上影响了溶解氧在这些海区的分布。需要指出的是,虽然在海洋内部各模式模拟的溶解氧浓度偏差较大,但是多模式平均结果却能表现出与观测较好的一致性。  相似文献   

5.
企鹅珍珠贝耗氧率和排氨率的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用室内实验生态学方法对企鹅珍珠贝的耗氧率和排氨率进行了研究。旨在为企鹅珍珠贝养殖容量(carrying capacity for aquaculture)的调查及育珠生理的研究提供参考,并可为海洋生态系统动力学和贝类能量学研究提供科学依据。研究结果表明,在实验温度(13~33℃)范围内,企鹅珍珠贝的耗氧率(OR)和排氨率(NR)与体重(W)都呈负相关,可分别表示为Y1=a1W-b1和Y2=a2W-b2,其中,a1的取值范围是1.330~4.128,b1的取值范围是0.453~0.651,a2的取值范围是0.150~0.354,b2的取值范围是0.446~0.634。在实验室温度(13~33℃)条件下,企鹅珍珠贝的耗氧率为0.329~7.303 mg/(g·h),排氨率为0.035~0.489 mg/(g·h),其中耗氧率在28℃时达到最高值,33℃时开始下降,而排氨率则呈持续升高趋势。企鹅珍珠贝呼吸和排泄Q10值范围分别为0.210~2.494和1.193~2.483。在23~28℃温度范围内,不同规格企鹅珍珠贝的耗氧率和排氨率的比值(原子数O/N)较高。方差分析表明,体重、温度及二者的交互作用对企鹅珍珠贝的耗氧率和排氨率均有极显著的影响(P<0.01)。企鹅珍珠贝的日常代谢明显高于标准代谢,耗氧率和排氨率平均值分别提高32.1%和76.7%。  相似文献   

6.
本研究首次探究了西太平洋雅浦海沟北段从表层到超深渊海水中甲烷(CH4)及二甲基硫(DMS)的前体物质二甲基巯基丙酸内盐(DMSP)的浓度变化情况。结果表明:雅浦海沟海水甲烷浓度变化范围为1.49~3.87 nmol/L。其上层海水甲烷平均浓度最高,有明显的次表层极大现象。雅浦海沟氧最小层海水的甲烷平均浓度最低;在500~1 000 m中层水中甲烷浓度有一定程度的增大,1 000 m以下至底层甲烷浓度继续升高。研究海区溶解态DMSP(DMSPd)和总DMSP(DMSPt)平均浓度的垂直变化随深度呈先增大后减小趋势,颗粒态DMSP(DMSPp)的平均浓度随深度呈波动式变化,在中层达到最大。雅浦海沟CH4和DMSP浓度垂直变化受浮游生物、微生物、光照、温度、压力、大洋环流等的复杂影响。在真光层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为负相关关系,在200 m至底层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为正相关关系,显示光照条件是造成雅浦海沟不同深度海水CH4和DMSP浓度相关性差异的关键因素。  相似文献   

7.
J. L. Mead   《Ocean Modelling》2005,8(4):369-394
We implement an approach for the accurate assimilation of Lagrangian data into regional general ocean circulation models. The forward model is expressed in Lagrangian coordinates and simulated float data are incorporated into the model via four-dimensional variational data assimilation. We show that forward solutions computed in Lagrangian coordinates are reliable for time periods of up to 100 days with phase speeds of 1 m/s and deformation radius of 35 km. The position and depth of simulated floats are assimilated into the viscous, Lagrangian shallow water equations. The weights for the errors in the model and data are varied and the assimilation results react appropriately. We show the effect of different spatial and temporal samplings of float data on all Lagrangian trajectories in the computational domain. At the end of the assimilation period, results from the Lagrangian shallow water equations could be interpolated and used as initial and boundary conditions in an Eulerian general ocean circulation model.  相似文献   

8.
Observed potential temperatures and concentrations of dissolved oxygen are analyzed to elucidate their variations during the period from 1958 to 1996 at Stn. P (37°43′ N, 134°43′ E) and from 1965 to 1996 at Stn. H (40°30′ N, 137°40′ E) in the Japan Sea. At Stn. P, increases of the potential temperature for the period are found below 800 m depth with the largest value of 0.16 ± 0.09°C per century at 800 m depth. At Stn. H, the potential temperature increased below 500 m depth. The increase rate has the largest value of 0.50 ± 0.18°C per century at 500 m depth and it is 0.30 ± 0.09°C per century at 800 m depth. The concentrations of dissolved oxygen increased around 800 m depth at Stn. P. At Stn. H, they increased above 800 m depth. On the other hand, they decreased below 1200 m depth at both stations. The layer of the dissolved oxygen minimum has deepened in these decades. These features appearing in the distributions of temperature and dissolved oxygen are successively simulated by a vertical one-dimensional advection-diffusion model including consumption of dissolved oxygen and termination of the deep water supply. These results suggest that the supply of the Japan Sea Proper Water into the deep layer, which is cold and rich in dissolved oxygen, has been decreasing for the last four decades. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans   总被引:2,自引:0,他引:2  
Within the eastern tropical oceans of the Atlantic and Pacific basin vast oxygen minimum zones (OMZ) exist in the depth range between 100 and 900 m. Minimum oxygen values are reached at 300–500 m depth which in the eastern Pacific become suboxic (dissolved oxygen content <4.5 μmol kg−1) with dissolved oxygen concentration of less than 1 μmol kg−1. The OMZ of the eastern Atlantic is not suboxic and has relatively high oxygen minimum values of about 17 μmol kg−1 in the South Atlantic and more than 40 μmol kg−1 in the North Atlantic. About 20 (40%) of the North Pacific volume is occupied by an OMZ when using 45 μmol kg−1 (or 90 μmol kg−1, respectively) as an upper bound for OMZ oxygen concentration for ocean densities lighter than σθ < 27.2 kg m−3. The relative volumes reduce to less than half for the South Pacific (7% and 13%, respectively). The abundance of OMZs are considerably smaller (1% and 7%) for the South Atlantic and only 0% and 5% for the North Atlantic. Thermal domes characterized by upward displacements of isotherms located in the northeastern Pacific and Atlantic and in the southeastern Atlantic are co-located with the centres of the OMZs. They seem not to be directly involved in the generation of the OMZs.OMZs are a consequence of a combination of weak ocean ventilation, which supplies oxygen, and respiration, which consumes oxygen. Oxygen consumption can be approximated by the apparent oxygen utilization (AOU). However, AOU scaled with an appropriate consumption rate (aOUR) gives a time, the oxygen age. Here we derive oxygen ages using climatological AOU data and an empirical estimate of aOUR. Averaging oxygen ages for main thermocline isopycnals of the Atlantic and Pacific Ocean exhibit an exponential increase with density without an obvious signature of the OMZs. Oxygen supply originates from a surface outcrop area and can also be approximated by the turn-over time, the ratio of ocean volume to ventilating flux. The turn-over time corresponds well to the average oxygen ages for the well ventilated waters. However, in the density ranges of the suboxic OMZs the turn-over time substantially increases. This indicates that reduced ventilation in the outcrop is directly related to the existence of suboxic OMZs, but they are not obviously related to enhanced consumption indicated by the oxygen ages. The turn-over time suggests that the lower thermocline of the North Atlantic would be suboxic but at present this is compensated by the import of water from the well ventilated South Atlantic. The turn-over time approach itself is independent of details of ocean transport pathways. Instead the geographical location of the OMZ is to first order determined by: (i) the patterns of upwelling, either through Ekman or equatorial divergence, (ii) the regions of general sluggish horizontal transport at the eastern boundaries, and (iii) to a lesser extent to regions with high productivity as indicated through ocean colour data.  相似文献   

10.
文章分析了2013年南海南部4个季节航次的叶绿素a (Chl a)调查数据, 结果显示: 150m以浅水柱Chl a质量浓度均值分别为早春0.14mg•m-3、初夏0.12mg•m-3、初秋0.18mg•m-3、初冬0.16mg•m-3。早春和初夏偏低的原因与早春风速小, 初夏水温高, 不利于水体的垂直混合, 限制了深层海水中丰富的营养盐向上层水体补充有关。4个季节中海水次表层Chl a质量浓度最大值层(SCML)均出现在50m和75m, 这两个水层的Chl a质量浓度差异小, 季节变化不大, 平均值变化范围分别为0.24~0.26mg•m-3和0.22~0.26mg•m-3。受混合层深度和温跃层上界深度的共同影响, 50m水层Chl a质量浓度主要受制于深层富营养盐海水的向上补充, 75m水层Chl a质量浓度受水温的影响明显。  相似文献   

11.
Lipid classes in a small, eutrophicated salty lake (Rogoznica Lake, middle Adriatic), which is often subject to appeareance of anoxic conditions, were analyzed at the end of winter (March) and in summer (July) 2008. The results are supported with DOC, POC, phytoplankton, temperature, salinity and oxygen data. During both March and July massive, diatom blooms were recorded with maximum values at 5 m depth. Total lipids were found at high concentrations that were similar for the samplings in two months. Total particulate lipids dominated the pool, and showed large variations from 46.37 to 369.88 μg/l, with the highest concentration observed in the bottom anoxic layer in March. The variations for dissolved lipids were smaller and ranged from 44.82 to 124.35 μg/l. Opposite to lipids, DOC values increased 1.5 times between the two samplings, from the value of average 0.95 mg C/l in March to the average value of 1.44 mg/l in July. Conformingly with diatom blooms, POC was found in July at high concentrations (0.28–1.50 mg C/l), contributing to total organic carbon up to 46%. The distribution of organic carbon and lipids showed the tendency of accumulation toward deeper layers. The characterization of individual lipid classes revealed the dominance of phospholipids, indicating that the lipids in the lake mainly originated from the photosynthetically active phytoplankton community, which is sustained by high production of oxygen (oxygen saturation up to 200%). Low contribution of neutral lipids in the particulate fraction points to high availability of nutrients for present phytoplankton community. Lipid breakdown indices were found at significantly higher concentrations in March compared to July. Sea surface microlayer, the hydrophobic boundary, appeared to be generally lipid depleted in comparison to the sub-surface water. Qualitative analysis of sulfolipids revealed the potential of the lake for the occurrence of chemical interaction of sulfur with present organic matter.  相似文献   

12.
According to data obtained in the Bering Sea during the 4th Chinese National Arctic Research Expedition, the distribution of dissolved oxygen(DO) was studied, causes of its maximum concentration were discussed, and the relationships between DO and other parameters, such as salinity, temperature, and chlorophyll a were analyzed. The results showed DO concentration ranged from 0.53 to 12.05 mg/L in the Bering Sea basin. The upper waters contained high concentrations and the maximum occurred at the depth range from 20 to 50 m. The DO concentration decreased rapidly when the depth was deeper than 200 m and reached the minimum at the depth range from 500 to 1 000 m, and then increased slowly with the depth increasing but still kept at a low level. On the shelf, the DO concentration ranged from 6.53 to 16.63 mg/L with a mean value of 10.75 mg/L, and showed a characteristic of decreasing from north to south. The DO concentration was higher in the area between the Bering Sea and Lawrence Island and was lower in the southeast and southwest of Lawrence Island at the latitude of 62°N. The formation of maximum DO concentration was concerned with phytoplankton photosynthesis and formation of the themocline. To the south of Sta. B07 in the Bering Sea basin, the oxygen produced by photosynthesis permeated to the deeper water and the themocline made it difficult to exchange vertically, and to the north of Sta. B07, the maximum DO concentration occurred above the themocline due to phytoplankton activities. On the shelf, the oxygen produced by phytoplankton photosynthesis gathered at the bottom of the thermocline and formed the DO maximum concentration. In the Bering Sea basin, the DO and salinity showed a weak negative correlation(r=0.40) when the salinity was lower than 33.1, a significant negative correlation(r=0.92) when the salinity ranged from 33.1 to 33.7, and an irregular reversed parabola(r=0.95) when the salinity was greater than 33.7.  相似文献   

13.
Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and δ18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and δ18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin.Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30–50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift.The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32–34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf’s bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30–32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.  相似文献   

14.
2009-2010年冬季南海东北部中尺度过程观测   总被引:2,自引:1,他引:1  
根据南海北部陆架陆坡海域2009-2010年冬季航次的CTD调查资料,发现西北太平洋水在上层通过吕宋海峡入侵南海,其对南海东北部上层水体温盐性质的影响自东向西呈减弱趋势,影响范围可达114°E附近。入侵过程中受东北部海域反 气旋式涡旋(观测期间,其中心位于20.75°N,118°E附近) 的影响,海水的垂向和水平结构发生了很大变化,特别是涡旋中心区域,上层暖水深厚,混合层和盐度极大值层显著深于周边海域。该暖涡在地转流场、航载ADCP观测海流及卫星高度计资料中均得到了证实。暖涡的存在还显著影响了海水化学要素的空间分布,暖涡引起的海水辐聚将上层溶解氧含量较高的水体向下输运,使次表层的暖涡中心呈现高溶解氧的分布特征。  相似文献   

15.
N2O concentration and its isotopomer ratios were measured over a wide area from San Diego to Honolulu in the eastern subtropical North Pacific (ESNP). Waters in the study area had an N2O maximum (38.2–50.5 nmol kg?1) at 600–1000 m depth, which is similar to the profiles obtained previously in other areas in the North Pacific. We separated the seawater into five water masses (two for the surface layer, two for the middle layer, and one for the deep layer) and deduced N2O production–consumption mechanisms in each water body by use of N2O isotopomer ratios. The results showed that the mechanisms differ slightly among water masses. In the “coastal” surface layer, N2O is produced by nitrification (NH2OH oxidation). In the “open ocean” surface layer, it is produced mainly by nitrifier denitrification and to a lesser extent by nitrification under substrate-limited conditions. In both “upwelling” and “open ocean” middle layers it is produced mainly by denitrification and to a lesser extent by nitrifier denitrification. It is also partly reduced. In the deep layer, it is produced predominantly by denitrification with partial reduction. In this way, isotopomers aid elucidation of production–consumption mechanisms of N2O in the sea even though the mechanisms cannot always be ascertained.  相似文献   

16.
Quantifying the gross and net production is an essential component of carbon cycling and marine ecosystem studies.Triple oxygen isotope measurements and the O_2/Ar ratio are powerful indices in quantifying the gross primary production and net community production of the mixed layer zone,respectively.Although there is a substantial advantage in refining the gas exchange term and water column vertical mixing calibration,application of mixed layer depth history to the gas exchange term and its contribution to reducing indices error are unclear.Therefore,two cruises were conducted in the slope regions of the northern South China Sea in October 2014(autumn) and June 2015(spring).Discrete water samples at Station L07 in the upper 150 m depth were collected for the determination of δ~(17)0,δ~(18)O,and the O_2/Ar ratio of dissolved gases.Gross oxygen production(GOP) was estimated using the triple oxygen isotopes of the dissolved O_2,and net oxygen production(NOP) was calculated using O_2/Ar ratio and O_2 concentration.The vertical mixing effect in NOP was calibrated via a N_2O based approach.GOP for autumn and spring was(169±23) mmol/(m~2·d)(by O_2) and(189±26) mmol/(m~2·d)(by O_2),respectively.While NOP was 1.5 mmol/(m~2·d)(by O_2) in autumn and 8.2 mmol/(m~2·d)(by O_2) in spring.Application of mixed layer depth history in the gas flux parametrization reduced up to 9.5% error in the GOP and NOP estimations.A comparison with an independent O_2 budget calculation in the diel observation indicated a26% overestimation in the current GOP,likely due to the vertical mixing effect.Both GOP and NOP in June were higher than those in October.Potential explanations for this include the occurrence of an eddy process in June,which may have exerted a submesoscale upwelling at the sampling station,and also the markedly higher terrestrial impact in June.  相似文献   

17.
The fine structure of oxygen in some regions of the north-eastern Atlantic has been studied. A discrete-continuous inflow of the Mediterranean intermediate water has a strong effect on the O2 distribution in the layer of the main minimum of oxygen concentration. In general, this layer tends to increase and become more oxygenated when the mean vertical gradients of the oxygen concentration become smaller. Lenses of intrusion and inversion of the seawater with a high O2 content are observed in the layer. Passage of the lens in the layer of the main minimum of oxygen concentration induces vertical advection of waters and a decrease of the oxygen concentration above and below the lens within 500–700 m. Translated by V. Puchkin.  相似文献   

18.
污损生物是影响贝类养殖业生产效率的重要因素。污损生物不仅附着在养殖网笼上,而且也大量附着在养殖生物的贝壳上。大部分污损生物是滤食性捕食者,这些污损生物与养殖生物竞争食物,氧气与空间导致贝类生长速度减慢,死亡率提高。本实验以大亚湾养殖网笼里的珍珠贝及附着的污损生物为对象,研究有污损生物附着的珍珠贝及没有污损附着的珍珠贝在滤食,耗氧及排泄上的差异,同时对网笼上附着的污损生物优势种的滤食,呼吸及排泄也进行了测定,用以说明污损生物对养殖生物滤食,耗氧和排泄的影响。研究结果表明,有污损附着的珍珠贝及没有污损附着的珍珠贝在滤食率,耗氧率和氮磷排泄率上存在明显差异,有污损附着的珍珠贝的滤食率,NH4-N和PO4-P的排泄率要高于没有污损附着的珍珠贝。同时在网笼上附着的优势污损生物的滤食,耗氧和排泄也不容忽视,他们对食物的滤食,溶氧的消耗及氮磷排泄的贡献也很大。本研究结果表明,不管是附着在养殖生物贝壳上还是附着在网笼上的污损生物与养殖生物之间存在食物及氧气的竞争,污损生物对水中氮、磷浓度的提高贡献也很大,因此在养殖中,污损生物的影响不容忽视。  相似文献   

19.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

20.
Vertical variability in the bio-optical properties of seawater in the northern South China Sea(NSCS) including inherent optical properties(IOPs) and chlorophyll a concentration(Chl) were studied on the basis of in situ data collected in summer 2008 using an absorption/attenuation spectrophotometer. An empirical model was developed to estimate Chl profiles based on the absorption line height at long wavelengths, with a relative root mean square error of 37.03%. Bio-optical properties exhibited large horizontal and vertical spatial variability. As influenced by coastal upwelling and the Zhujiang River(Pearl River) discharge, both IOPs and Chl exhibited high values in the surface waters of the inner shelf, which tended to decrease with distance offshore. Subsurface maximum layers of IOPs and Chl were observed in the middle and outer shelf regions, along with significantly higher values of attenuation coefficients beneath this layer that rapidly increased towards the bottom. In the open ocean, both IOPs and Chl exhibited consistent variability, with the subsurface maximum layer typically located at34–84 m. Phytoplankton were found to be one of the major components in determining the vertical variability of bio-optical properties, with their vertical dynamics influenced by both physical forcing and light attenuation effects. The depth of the subsurface maximum layer was found to be closely related to the fluctuation of the oceanic thermocline and the depth of the euphotic zone, which also affected the total integrated biomass of the upper ocean. Typically high values of attenuation coefficients observed in the bottom waters of the continental shelf reflected the transport of particulate matter over the bottom boundary layer. Our results reveal large spatial differences in bio-optical profiles in response to complex marine ecodynamics in the NSCS. From the perspective of marine research, high-resolution optical measurements are clearly advantageous over conventional bottle sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号