首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computation of wave kinematics at or near offshore structures is a vitally important consideration in the design of offshore structures. Design waves often include breaking and near-breaking storm waves in the presence of currents. It is important to predict the kinematics of these steep waves. Experiments were carried out in a wave tank with simulated steep waves with and without in-line current in which the wave profiles and the corresponding kinematics were simultaneously measured. The simulated waves represent shallow-water Gulf of Mexico storm waves. Many of these waves broke at or near the measuring instruments. Irregular stream-function theory was used to compute the wave kinematics and was found to generally predict the measured wave-current kinematics well. The differences found between the two are noted. Some of the noteworthy features of the breaking waves are also discussed.  相似文献   

2.
- A composite pipeline is defined as a main big pipe composed of one or several small pipes. The flow behaviour around a submarine composite pipeline is more complicated than that around a single submarine pipeline. A series model test of composite pipelines in a wave-current coexisting field was conducted by the authors. Both in-line and lift forces were measured, and the resultant forces were also analyzed. The results of lift forces and resultant forces are reported in this paper. It is found that the lift force coefficients for composite pipelines are well related to the KC number. The lift force coefficients for an irregular wave-current coexisting field are smaller than those for a regular wave-current coexisting field. The frequency of lift force is usually twice the wave frequency or higher. The authors test indicates that the resultant forces are about 10 to 20 percent larger than in-line forces (horizontal forces). The effect of water depth is analyzed. Finally, the relationship between lift f  相似文献   

3.
通过水槽物理模型试验,对不规则波作用下明基床上开孔沉箱所受到的波浪力进行了较为系统的试验研究,分析讨论了开孔沉箱总水平力峰(谷)值时刻对应的总垂直力与基床相对高度、开孔率、波陡、相对水深、消浪室相对宽度等影响因素之间的关系,并与暗基床的研究成果做了对比讨论,给出了明基床上开孔沉箱总垂直力比值(总水平力极值时刻对应的总垂直力/总垂直力极值)与各影响因素之间的计算关系式,研究结果可为工程应用提供参考。  相似文献   

4.
Evolution of waves and currents over a submerged laboratory shoal   总被引:1,自引:0,他引:1  
The vertically-integrated effect of interaction between waves and wave-induced currents on wave transformation over a submerged elliptic shoal was investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269–284.]. The numerical simulations were performed using two numerical wave-current model systems: one, a combination of the wave model SWAN and the current model SHORECIRC, and the other, a combination of the wave model REF/DIF and the same current model. A time-dependent, phase-resolving wave and current model, FUNWAVE, was also utilized to simulate the experiment. In the simulations, the developed wave-induced currents defocused waves behind the shoal and brought on a wave shadow zone that showed relatively low wave height distributions. For the breaking case of monochromatic waves, the wave heights computed using FUNWAVE showed good agreement with the measurements and the resulting wave-induced currents showed a jet-like velocity distribution in transverse direction. And the computed results of the two model combinations agreed better with the measurements than the computed results obtained by neglecting wave-current interaction. However, it was found that for the case in which transverse interference pattern caused by refracted waves was strong, REF/DIF-SHORECIRC did not correctly evaluate radiation stresses, the gradients of which generate wave-induced currents. SWAN-SHORECIRC, which cannot deal with the interference patterns, predicted a jet-like wave-induced current. For breaking random wave cases, the computed results of the two model combinations and FUNWAVE agreed well with the measurements. The agreements indicate that it is necessary to take into account the effect of wave-induced current on wave refraction when wave breaking occurs over a submerged shoal.  相似文献   

5.
A method to compute wave- and current-induced viscous drift forces and moments on floating platforms in regular and random waves is presented. The relative velocity drag term of Morison's equation is used in conjunction with frequency domain first-order motion transfer functions to compute the drift forces and moments. Mean viscous drift forces and moments in regular waves in all six degrees-of-freedom of a tension leg platform are computed. The relative importance of the free-surface force integration, steady current, wave-current interaction and platform motions on the computed drift forces and moments are discussed. The results from this method, in the frequency domain, are used to compute the drift forces and responses in irregular waves using existing methods developed for potential drift computations. Comparisons with results from time-domain computations are also presented and good agreement between the frequency-domain and time-domain results is found. Some comparisons with experimental data are also made. The frequency-domain method is found to be an efficient and useful tool for the analysis of semi-submersible and tension leg platforms during the preliminary design stage in which extensive parametric studies need to be undertaken.  相似文献   

6.
Numerical study of wave and longshore current interaction   总被引:1,自引:0,他引:1  
Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole(2001) and Reniers and Battjes(1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.  相似文献   

7.
《Coastal Engineering》2001,44(2):141-151
An analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally, it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior.  相似文献   

8.
通过水槽内规则波以及不规则波作用下明基床上开孔沉箱的稳定性试验,分析研究了三种基床高度上开孔沉箱的稳定性与相对基床高度、消浪室相对宽度、相对水深、波陡以及开孔率等因素间的相关关系,并利用最小二乘法给出开孔沉箱最小自重与其影响因素间的拟合公式,同时将计算值与试验值进行比较,二者吻合较好,试验结果可供工程设计参考应用。  相似文献   

9.
Wave reflection from partially perforated-wall caisson breakwater   总被引:2,自引:0,他引:2  
In 1995, Suh and Park developed a numerical model that computes the reflection of regular waves from a fully perforated-wall caisson breakwater. This paper describes how to apply this model to a partially perforated-wall caisson and irregular waves. To examine the performance of the model, existing experimental data are used for regular waves, while a laboratory experiment is conducted in this study for irregular waves. The numerical model based on a linear wave theory tends to over-predict the reflection coefficient of regular waves as the wave nonlinearity increases, but such an over-prediction is not observed in the case of irregular waves. For both regular and irregular waves, the numerical model slightly over- and under-predicts the reflection coefficients at larger and smaller values, respectively, because the model neglects the evanescent waves near the breakwater.  相似文献   

10.
SWAN模型中不同风拖曳力系数对风浪模拟的影响   总被引:1,自引:1,他引:0  
丁磊  于博 《海洋学报》2017,39(11):14-23
本文以荷兰哈灵水道海域为实验区域,通过敏感性实验,研究了在14 m/s、31.5 m/s和50 m/s(分别代表一般大风、强热带风暴和强台风的极端条件)定常风速下SWAN模型中不同风拖曳力系数对风浪模拟的影响程度。结果表明,对于近岸浅水区域(水深小于20 m),风拖曳力系数计算方案的选择对有效波高影响较小,而且当风速增加到一定程度后,波浪破碎成为影响波高值的主要因素;对于深水区域(水深大于30 m),一般大风条件下风拖曳力系数计算方案的选择对有效波高影响仍然较小,随着风速的继续增大,风拖曳力系数计算方案的选择对有效波高的影响逐渐显著。对于平均周期,风拖曳力系数计算方案的选择和风速的改变对其影响均较小,而由水深变浅导致的波浪破碎对其影响较为显著。根据敏感性实验结果,本文对SWAN模型中风拖曳力系数计算方案的选择做出如下建议:计算近岸浅水区域风浪场或深水区域一般大风条件风浪场时,其风拖曳力系数可以直接采用模型默认选项;而对于深水区域更大风速条件,可首先采用模型默认选项试算,然后结合当地海域实测波浪资料进行修正。  相似文献   

11.
明基床开孔沉箱不规则波反射系数试验研究   总被引:1,自引:1,他引:0  
通过二维波浪水槽物模试验,在考虑消浪室相对宽度、相对水深、相对波高、开孔率对反射系数的影响基础上,针对明基床开孔沉箱的工程应用,引入相对基床高度新的影响因素,通过控制单一变量原则分析各因素和反射率的关系,采用多元回归给出明基床开孔沉箱不规则波浪反射系数的计算公式,对明基床开孔沉箱的消浪机理进行了有益的探索,研究成果为工程设计及应用提供了一种简捷可靠的计算方法。  相似文献   

12.
开孔沉箱是将传统沉箱的前壁开孔,使沉箱前的入射波浪与反射波浪非同相位叠加,达到消能目的。消浪室是开孔沉箱的重要特征结构,其宽度对开孔沉箱的消浪性能具有重要影响。针对可渗明基床开孔沉箱,赋予消浪室宽度以较大的变化范围,开展专项物模试验,研究探讨了在规则波与不规则波作用下,相对消浪室宽度对可渗明基床开孔沉箱前波高反射系数的影响规律,发现反射系数随相对消浪室宽度的增加呈减小—增大—减小的振荡特性,这一发现有别于前人的研究成果,对工程中开孔沉箱消浪室结构的优化设计具有借鉴意义。同时,对试验工况进行数值模拟和解析计算,以物模试验值为标准,评价两种方法在研究相对消浪室宽度对开孔沉箱波高反射系数影响时的规律把握能力及计算精度,对工程中应用这两种方法给出相关建议。  相似文献   

13.
In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.  相似文献   

14.
In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.  相似文献   

15.
-The hydrodynamic coefficients C_d and C_m are not only dependent on the size of slender cylin-der,its location in water,KC number and Re number,but also vary with environmental conditions,i.e.,in regular waves or in irregular waves,in pure waves or in wave-current coexisting field.In this paper,thenormalization of hydrodynamic coefficients for various environmental conditions is discussed.When aproper definition of KC number and proper characteristic values of irregular waves are used,a unified re-lationship between C_d,C_m and KC number for regular waves,irregular waves,pure waves and wave-cur-rent coexisting field can be obtained.  相似文献   

16.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

17.
The water exchange and water quality around coastal structures are considered by analytical, numerical and experimental methods. Water exchange for a small yacht harbour at the Black Sea coast is discussed as an application example. Physical and numerical experiments were carried out to determine the wave induced current field and to correlate the water exchange inside the area around the harbour mole. A hydraulic approach was applied to estimate the water exchange intensities for typical zones. The proposed mathematical model is an irregular wave-current model which includes the interaction between waves and current and a modified breaking criterion. The evolution of salinity concentration during the experimental investigations shows the water exchange intensity. A satisfactory agreement between calculated and measured concentration evolution was obtained.  相似文献   

18.
WANG  Yuan-zhan 《中国海洋工程》2003,17(4):565-576
Sliding is one of the principal failure types of caisson breakwaters and is an essential content of stability examination in caisson breakwater design. Herein, the mass-spring-dashpot model of caisson-base system is used to simulate the vi-brating-sliding motion of the caisson under various types of breaking wave impact forces, i.e., single peak impact force, double peak impact force, and shock-damping oscillation impact force. The effects of various breaking wave impacts and the sliding motion on the dynamic response behaviors of caisson breakwaters are investigated and the calculation of relevant system parameters is discussed. It is shown that the dynamic responses of the caisson are significantly different under different types of breaking wave impact forces even when the amplitudes of impact forces are equal. The amplitude of dynamic response of the caisson is lower under single peak impact excitation than that under double peak impact or shock-damping oscillation impact excitation. Though the disp  相似文献   

19.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

20.
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces.The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of hnear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into comidemtion in design and application of important offshore structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号