首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

2.
《Coastal Engineering》2005,52(3):257-283
Vortex generation and evolution due to flow separation around a submerged rectangular obstacle under incoming cnoidal waves is investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used in the measurement. Based on the PIV data, a characteristic velocity, phrased in terms of incoming wave height, phase speed, dimension of the obstacle, and a local Reynolds number are proposed to describe the intensity of vortex. The numerical model, which solves the two dimensional Reynolds Averaged Navier Stokes (RANS) equations, is used to further study the effects of wave period on the vortex intensity. Measurements for the mean and turbulent velocity fields further indicate that the time history of the intensity of fluid turbulence is closely related to that of the vortex intensity.  相似文献   

3.
A three-dimensional (3D) large-eddy-simulation model with macroscopic model equations of porous flow is proposed to investigate solitary waves interacting with permeable breakwaters. The major objective of this paper is twofold. First, we seek to evaluate the present model through the comparison with available simulated and measured data in the literature. The second aim, given the 3D nature of flow past a permeable breakwater, the variations of permeable breakwater modeled on both macroscopic and microscopic scales are examined. First validation is carried out with experiments on solitary wave propagation in a 3D wave basin and then runup on a vertical permeable breakwater with a gap in the lateral direction. A satisfactory agreement on the free surface elevation time series is obtained between model and measured results. Second, we replicate the experiments on a solitary wave interaction with a submerged permeable breakwater in a two-dimensional narrow wave flume. The porous medium is composed of spheres with a uniform size and arranged in a non-staggered regular pattern such that the porous medium can thus be modeled on macroscopic and microscopic scales. The numerical calculations indicate that the results obtained with macroscopic and microscopic modeling both fit the measurements fairly well in terms of the free surface elevations and velocity fields. Specifically, the microscopic modeling better simulates detailed phenomena such as flow injection from the porous medium and the initial stage of the formation of the main vortex in the leeward face of the obstacle. After the solitary wave completely propagates over the permeable object, the discrepancies between macroscopic and microscopic model results are insignificant. More accurate 3D results are used to determine the trajectories of fluid particles around the porous object to help understand the possible sediment movements in suspensions.  相似文献   

4.
A two-frame particle image velocimetry (PIV) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from 0° to 80°, 150 instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors in the propeller wake region. The slipstream contraction occurs in the near-wake region up to about X/D=0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.  相似文献   

5.
In this study,characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical twodimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propa-gates over breakwater. When wave crest propagates over breakwater,the anticlockwise vortex may generate. On the contrary,when wave hollow propagates over breakwater,the clockwise vortex may generate. Meanwhile,the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy,turbulent dissi-pation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics.  相似文献   

6.
孙斌  蒋昌波  夏波 《海洋工程》2012,30(1):92-97
利用Flow-3D建立三维数值波浪水槽,模拟波浪在不对称台阶地形上的传播。系统研究规则波作用下墩柱周围水流的流动特性,分析墩柱周围的瞬时速度场、涡量场以及KC值变化,不同相位时墩柱前、后水平流速分布情况。结果表明:波浪在台阶地形传播的过程中,墩柱迎水面的涡动结构不够明显;高涡量呈对称状聚集在墩柱的背水面,并形成一对旋转方向相反的涡结构;周期对KC值的影响比波高的影响要明显;墩柱迎水面水平方向流速变化较大,侧面水平流速变化最为剧烈,背面由于受到墩柱的掩护作用水平方向流速变化不大,在墩柱的正面和侧面竖向环流明显。  相似文献   

7.
采用模型试验和数值模拟研究了不同水深工况下半潮堤前的反射形态及时均流速场。基于Hilbert变换建立了叠合波的时频分离技术,同时获取了入射波和反射波的波面过程及相位关系,通过试验数据证明其适用于不同反射程度的波浪信号分析。不同水深工况下,半潮堤前形成了部分立波系统,腹点和节点分别以四分之一波长的偶数倍和奇数倍交替增加。半潮堤前底床水质点水平速度包络图与波面包络图相差四分之一周期的相位,水平速度的极大值和极小值分别出现在波面包络图的节点和腹点,意味着节点处易形成冲刷,腹点处易形成淤积。3种工况的周期平均速度场均在迎浪基床上方的堤脚处存在一个小型环流系统,可能引起局部冲刷,此处需加强防护。淹没工况下,半潮堤前的周期平均速度场形成一个大型环流系统,表层水流向堤后,中下层水流向海侧,意味着底床悬起的泥沙很可能向离岸方向流失。  相似文献   

8.
We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique is employed to measure instantaneous free surface displacements and velocity fields in the vicinity of a porous dike. The porous medium, consisting of uniform glass spheres, is mounted on the seafloor. Due to the limited size of each field of view (FOV) for high spatial resolution purposes, four FOVs are set in order to form a continuous flow field around the structure. Quantitative mean properties are obtained by ensemble averaging 30 repeated instantaneous measurements. The Reynolds decomposition method is then adopted to separate the velocity fluctuations for each trial to estimate the turbulent kinetic energy. In addition, a highly accurate two-dimensional model with the volume of fluid interface tracking technique is used to simulate an idealized volume-averaged porous medium. The model is based on the Volume-Averaged Reynolds Averaged Navier–Stokes equations coupled with the non-linear kε turbulence closure solver. Comparisons are performed between measurements and numerical results for the time histories of the free surface elevation recorded by wave gauges and the spatial distributions of free surface displacement with the corresponding velocity and turbulent kinetic energy around the permeable object imaged by the PIV system. Fairly good agreements are obtained. It is found that the measured and modeled turbulent intensities on the weather side are much larger than those on the lee side of the object, and that the magnitude of the turbulent intensity increases with increasing wave height of a solitary wave at a constant water depth. The verified numerical model is then used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.  相似文献   

9.
10.
《Coastal Engineering》2001,44(2):117-139
In this paper, laboratory data for free surface displacements and velocity fields in front of a caisson breakwater covered with wave-dissipating blocks, together with wave pressures acting on the caisson, are presented and discussed. The core of the breakwater is made of a concrete caisson with a vertical front wall. The caisson is protected by a thick layer of tetrapods and is supported by a rubble mound. The breakwater is placed on the 1/25 impermeable slope. Two types of incident waves are used in the experiments: nonbreaking waves and spilling-type breaking waves. In the breaking wave case, the incident wave breaks offshore before it reaches the breakwater. The velocity data are obtained by using both the Laser Doppler Velocimeter (LDV) and the Electromagnetic Current Meter (EMCM). The raw data are analyzed using a numerical-filtering scheme so that turbulent fluctuations are separated from the phase-dependent wave motions. The vertical profiles of the time-averaged (over a wave period) turbulent velocity components at several vertical cross-sections in front of the breakwater are then analyzed. The spatial variations of the time-averaged turbulence velocity suggest that turbulence is generated inside the protective armor layer and transported into the flow region in front of the breakwater. The wave pressures on the vertical face and on the bottom of the caisson are also reported.  相似文献   

11.
波浪与起伏水平板防波堤相互作用数值模拟   总被引:1,自引:1,他引:0  
利用自主研发的基于紧致插值曲线CIP(constrained interpolation profile)方法的数学模型,开展规则波与起伏水平板防波堤相互作用的数值模拟研究。模型在笛卡尔直角坐标下建立,以CIP方法为流场基本求解器,分步求解Navier-Stokes方程,利用高精度的流体体积类型的THINC/SW (tangent of hyperbola for interface capturing with slope weighting)方法重构自由液面,采用浸入边界IBM(immersed boundary method)方法处理波浪与起伏板防波堤的耦合作用问题,通过动量源项造波方法模拟波浪的产生。重点关注波浪的浅水变形和板两端涡旋脱落的非线性现象,分析不同潜深、波要素下的板周围流场分布、板的运动响应和波浪的反透射系数。结果表明:起伏水平板主要通过能量反射、板上浅水变形和板两端的涡脱落消能,能有效减小板后波高,具有作为防波堤的可行性。  相似文献   

12.
In this study the basic characteristics of the dynamic response and vortex shedding from an elastically mounted circular cylinder in laminar flow is numerically investigated. The Reynolds number ranges from 80 to 160, a regime that is fully laminar. The governing equations of fluid flow are cast in terms of vorticity. The two-dimensional vorticity transport equation is solved using a vortex method. Effects of important parameters on the system response and vortex shedding are investigated; these include: mass ratio, damping ratio, Reynolds number and reduced velocity. The numerical results show that a decrease in either the mass ratio or damping ratio of the system can lead to an increase in both the oscillation amplitude and the reduced velocity range over which lock-in occurs. The results also suggest that the mass-damping parameter may characterize the system response adequately, although the effect of changing mass ratio appears to be a little more profound compared to damping ratio. Vorticity contour plots suggest that the vortex shedding occurs in the 2S mode, although a wake structure similar to the C(2S) mode appears at distances 15–20 diameters downstream in the lock-in region. The simulation results are in good agreement with previously published data.  相似文献   

13.
《Coastal Engineering》2005,52(10-11):949-969
Recent experimental data collected during the DELOS project are used to validate two approaches for simulating waves and currents in the vicinity of submerged breakwaters.The first approach is a phase-averaged method in which a wave model is used to simulate wave transformation and calculate radiation stresses, while a flow model (2-dimensional depth averaged or quasi-3D) is used to calculate the resulting wave driven currents. The second approach is a phase resolving method in which a high order 2DH-Boussinesq-type model is used to calculate the waves and flow.The models predict wave heights that are comparable to measurements if the wave breaking sub-model is properly tuned for dissipation over the submerged breakwater. It is shown that the simulated flow pattern using both approaches is qualitatively similar to that observed in the experiments. Furthermore, the phase-resolving model shows good agreement between measured and simulated instantaneous surface elevations in wave flume tests.  相似文献   

14.
Zhao  Xi-zeng  Cheng  Du  Zhang  Yi-fei  Li  Meng-yu 《中国海洋工程》2019,33(3):253-267

In this study, solitary waves passing over a submerged breakwater are investigated both experimentally and numerically. A total of 9 experimental conditions are carried out, including different incident wave heights and water depths. Numerical simulations are performed using a high-order finite-difference model solving Navier-Stokes (N-S) equations. The predicted water wave elevation, velocity and pressure show good agreement with experimental data, verifying the accuracy and capacity of the numerical model. Furthermore, parametric studies are conducted by numerical modelling to examine the effects of the geometrical features of submerged dike on hydrodynamic characteristics around the breakwater.

  相似文献   

15.
基于非静压数值计算模型,本文系统研究了聚焦波作用下透水潜堤的消波特性,通过设置合理的计算工况,详细分析了波高、堤顶水深、谱峰周期、孔隙率以及堤顶宽度5种因素对透水潜堤消波特性的影响。与此同时,本文将透水潜堤的计算结果同不透水潜堤的计算结果进行了对比分析。计算结果表明:透水潜堤对聚焦波的消减作用要强于不透水潜堤,从而说明,透水潜堤能更有效地降低畸形波对海岸基础设施的影响;波高和堤顶水深是影响潜堤消波特性的重要因素,随入射波高增加、堤顶水深减小,透水潜堤对波浪的消减作用逐渐增强。透水潜堤对长周期波浪的消波效果较差。在本文考虑的孔隙率范围内,孔隙率越大,透水潜堤消波效果越好;当孔隙率为0.4,堤顶宽度为0.612 5 m时,透水潜堤可消减54%的入射波能,比不透水潜堤对入射波能的消减增加36.1%。本文研究结果可为进一步认识透水潜堤的消波特性和海岸防护工程设计提供相应的参考。  相似文献   

16.
1 IntroductionIn coastal areas a ubiquitous phenomenon is theformation of ripples in the seabed. It is now widelyaccepted that the flow and sediment transport overseabed are vital in relation to erosion, surface wavedissipation and pollution dispersion et…  相似文献   

17.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.  相似文献   

18.
The interaction of surface water waves with submerged breakwaters   总被引:1,自引:0,他引:1  
This paper concerns the behaviour of nonlinear regular waves interacting with rectangular submerged breakwaters. A new series of experimental results is presented and compared with numerical calculations based upon a Boundary Element Method (BEM) that utilises multiple fluxes to deal with the discontinuities encountered at the corners of the domain. Specifically, comparisons concern both the spatial water surface profiles at various times and the spatial evolution of the harmonics generated by the breakwaters, the latter being an important focus for the paper. The BEM is shown to accurately model both the water surface profile and the harmonic generation, provided the breakwater width is sufficient to ensure that flow separation is not a controlling influence. Furthermore, evidence is provided to confirm that reflection from rectangular submerged breakwaters is fundamentally a linear phenomenon.  相似文献   

19.
In this work, we carried out an asymptotic analysis, up to the second order in a regular expansion, of the interaction of linear long waves with an impermeable, fixed, submerged breakwater composed of wavy surfaces. Below the floating breakwater, there is also a step with a wavy surface. The undulating surfaces are described by sinusoidal profiles. The effects of three different geometric parameters — the amplitude of the wavy surfaces and the submerged length and width of the structure — on the reflection and transmission coefficients are analyzed. The hydrodynamic forces are also determined. The governing equations are expressed in dimensionless form. Using the domain perturbation method, the small wavy surfaces of the breakwater are linearized. The wavy surfaces of the breakwater generate larger values of the reflection coefficient than those obtained for breakwaters with flat surfaces, and the largest values of this coefficient are obtained when the length of the breakwater is of the same order of magnitude as the wavelength. The asymptotic solution is compared with the theoretical solutions that have been reported in the specialized literature and with a numerical solution. The present mathematical model can be used as a practical reference for the selection of the geometric configuration of a submerged floating breakwater under shallow flow conditions.  相似文献   

20.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号