首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

2.
The experiment was conducted to ascertain net production and consumption rates of 15NH4 + and 15NO3 ? for water and sediment in a wetland. This was done using 15N isotope pool dilution methodology under ambient and elevated atmospheric CO2 concentrations in experimental riparian wetlands to obtain the gross N transformation rates. The 15N budget for sediment was also estimated. The results suggested that the differences in high proportion of 15N concentration in the overlying water body under elevated CO2 could be attributed to the low production and high consumption rates of 15NH4 + in sediment. The elevated CO2 effect on production and consumption of NH4 + decreased by 144 % (P = 0.014) and increased by 153 % (P = 0.009), respectively. Thereby, 15NH4 + production rates are negatively related with 15NO3 ? consumption rates and this accounted for the decreases in net 15NO3 ? consumption under CO2 enrichment in the wetland sediment by 11 % (P = 0.528). Therefore, 15NO3 ? production and consumption rates may strongly depend on NH4 + production. Inorganic 15N and total 15N exported from sediment to overlying water body by the effect of CO2 were 41 % (P = 0.071) and 18 % (P = 0.000), respectively. Therefore, low net 15NH4 + production and high 15NH4 + consumption rates under elevated CO2 may partly explain the significant reduction of N from the sediment.  相似文献   

3.
Quantifying Sediment Nitrogen Releases Associated with Estuarine Dredging   总被引:1,自引:0,他引:1  
Experimental studies of sediment pore water NH4 + chemistry, adsorbed NH4 + concentrations, sediment?Cwater NH4 + exchange and N2?CN flux were carried out to quantify the mass of labile N that can be released during large-scale dredging activities. Pore water NH4 + concentrations below 0.5-m sediment depth averaged 5 ± 2 mmol L?1 with average adsorbed NH4 + concentrations of 11 ??mol g?1. Elevated NH4 + concentrations found in rapidly accreting dredge channels are partly a result of the rapid advective burial of both reactive organic matter and pore water. Elutriate tests, a dilution of sediment with site water, yielded adsorbed NH4 + concentrations very similar to those using the more typical KCl extraction. Intact deep sediment sections exposed to overlying water, used to simulate postdredging conditions, showed high initial fluxes of ammonium and no development of coupled nitrification?Cdenitrification under the cold incubation conditions. Despite high concentrations and effluxes of NH4 + during dredging, the amount of NH4 + release during dredging was <0.5% of northern Chesapeake Bay sediment fluxes. The likelihood of large environmental effects of nitrogen release during the dredging of navigational channels in the Chesapeake Bay is low.  相似文献   

4.
The 15N composition of seagrass and benthic macroalgae from shallow waters of Sarasota Bay was measured to determine if stable N isotopes can be used to trace stormwater N into macrophyte production within an urbanized estuary. Results show isotopically enriched macroalgae at the landward stations near creeks and bayous in the central Bay and in the southern portion of the Bay. A known sewage outfall at Whitaker Bayou resulted in δ 15NO3 values from 0 to +9‰. Isotopically enriched NH4 values in Phillippi Creek (+10 to +17‰) were similar to the stormwater 15NH4 values from the watershed (+7 to +18‰). Enriched N sources supported a significant portion of macroalgae N demands in the southern reaches of the Bay while isotopically depleted N sources (i.e., atmospheric deposition and/or fertilizers) appear to be more important for macroalgae in the northern portion of the Bay. Macroalgae were typically more enriched than seagrass and appear to be better indicators of anthropogenic loadings near creeks and bayous that receive large volumes of stormwater and other anthropogenic N sources. Historically, studies have used enriched 15N in macrophytes to infer wastewater influences. This study shows that stormwater N inputs need to be considered in nitrogen budgets for aquatic systems that show anthropogenic 15N enrichment.  相似文献   

5.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

6.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

7.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

8.
《Applied Geochemistry》1995,10(4):391-405
Extensive NO3 contamination of groundwater in the Abbotsford aquifer to levels above drinking water limits is a major problem in the Fraser Lowlands of southwestern British Columbia, Canada. Nitrate concentrations in the aquifer ranged from 0 to 151 mg/l NO3, with a median concentration of 46 mg/l NO3. Of 117 wells sampled, 54% had NO3 concentrations exceeding the drinking water limit of 45 mg/1. Approximately 80% of the study area had groundwater NO3 concentrations exceeding 40 mg/1 NO3. Potential NO3 source materials were poultry manure N and synthetic NH4 based fertilizers. Theδ15N of solid poultry manure samples ranged between + 7.9 and + 8.6‰ (AIR). Four brands of synthetic fertilizers commonly used hadδ15N values between −1.5 and −0.6‰. Ammonia volatilization caused theδ15N of groundwater NO3 produced from poultry manure N to range between +8 and +16‰. Theδ18O values of groundwater NO3, by contrast, mostly ranged between +2 and +5‰ (SMOW). This narrow range ofδ18O values fell within the expected range of NO3 produced by nitrification of reduced N forms such as poultry manure N and NH4 fertilizers, and had a similar range ofδ18O values as NO3 in the upper part of the unsaturated zone below raspberry fields and beneath former manure piles. Theδ15N-NO3 andδ18O-NO3 data confirmed that NO3 in the aquifer was predominantly derived from poultry manure and to a lesser extent from synthetic fertilizers. Theδ18O-NO3 data further suggested the nitrification process occurred mainly in the summer months, with the soil NO3 produced subsequently flushed into the aquifer during fall recharge. Theδ15N-NO3andδ18O-NO3 data conclusively indicated that no significant bacterial denitrification is taking place in the Abbotsford aquifer.  相似文献   

9.
We examined the effects of seasonal salinity changes on sediment ammonium (NH4 +) adsorption and exchange across the sediment–water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolved NH4 + relative to adsorbed NH4 + in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (∼3) increases in salinity from freshwater conditions had the greatest effect on NH4 + adsorption by reducing the exchangeable pool from 69% to 14% of the total NH4 + in the upper estuary sediments that experience large (0–20) seasonal salinity shifts. NH4 + dynamics did not appear to be significantly affected by salinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity-mediated desorption by constructing a simple mechanistic numerical model for pore water chloride and NH4 + diffusion for sediments of the upper estuary. The model predicted pore water salinity and NH4 + profiles that fit measured profiles very well and described a seasonal pattern of NH4 + flux from the sediment that was significantly affected by salinity. The model demonstrated that changes in salinity on several timescales (tidally, seasonally, and annually) can significantly alter the magnitude and timing of NH4 + release from the sediments. Salinity-mediated desorption and fluxes of NH4 + from sediments in the upper estuary can be of similar magnitude to rates of organic nitrogen mineralization and may therefore be important in supporting estuarine productivity when watershed inputs of N are low.  相似文献   

10.
Meiliang Bay and Gonghu Bay, in the north of Taihu Lake, are important water sources for the city of Wuxi, and increased eutrophication now threatens the safety of drinking water. The distribution of nitrogen (N) speciation and source of N in the surface waters in the north of Taihu Lake is studied, which was an important first step in controlling N pollution. The result shows that the average concentration of ammonia (NH4 +) and nitrate (NO3 ?) of surface water in Meiliang Bay was 0.32 and 0.35 mg/L, while 0.21 and 0.74 mg/L of Gonghu Bay, in which both bays had serious nitrate pollution. The concentrations of NH4 + and NO3 ? in the surface water of the two bays had a trend of gradual decrease from north to south. The maximum concentrations of NH4 + and NO3 ? of two bays were observed near the inflowing rivers, and the maximum concentrations of NH4 + in surface water of two bays were 0.49 and 0.61, and 0.77 and 1.38 mg/L of NO3 ?. The concentration of NH4 + in the interstitial water of the two bays had a trend of gradual decrease from west to east, but NO3 ? had the opposite tendency. The maximum concentrations of NH4 + in the interstitial water of the two bays were 5.88 and 4.64, and 3.58 and 7.18 mg/L of NO3 ?. The exchangeable NH4 + content in the sediment of Meiliang Bay had a trend of gradual decrease from north to south, but Gonghu Bay showed the reverse. The exchangeable NO3 ? content in the sediment of Meiliang Bay had a trend of gradual decrease from east to west, but a decreasing trend from north to south was observed in Gonghu Bay. The maximum concentrations of exchangeable NH4 + were determined, and the values were 96.25 and 74.90 mg/kg, as well as NO3 ? with the values of 12.06 and 7.08 mg/kg. Chemical fertilizer and domestic sewage were the major sources of nitrate in surface water of Gonghu Bay, contributing 39.16 and 47.79%, respectively. Domestic sewage was the major source of nitrate in Meiliang Bay, contributing 84.79%. The denitrification process in Gonghu Bay was more apparent than in Meiliang Bay. Mixing and dilution processes had important effects on changing the concentration of nitrate transportation in the two bays.  相似文献   

11.
Field experiments were conducted to study the short-time response in growth and sediment properties of Zizania latifolia to four levels of water depth: 10, 50, 90, and 130 cm. The results showed that Z. latifolia was sensitive to high water depth stress in terms of the significantly decreased basal stem diameter, leaf width, root length, total biomass, and root to shoot ratio with increasing water depth. It was found suitable to grow in shallow water less than 50 cm in depth. The growth of Z. latifolia significantly increased sediment moisture content and porosity, while reduced wet bulk density in sediment and NH4–N concentration in interstitial water. Along the water depth gradient, the growth of Z. latifolia significantly impacted sediment wet bulk weight and loss on ignition, both NH4–N and PO4–P concentrations in interstitial water. However, no obvious regularities were observed in the sediment vertical profiles. NH4–N and PO4–P concentrations in interstitial water were much higher than in overlying water, indicating that they could diffuse from sediment to overlying water. NH4–N concentration was also higher in deep sediment. Growth properties of Z. latifolia (except for leaf length) are significantly correlated to wet bulk density, loss on ignition, NH4–N concentration in sediment and NH4–N, PO4–P concentrations in interstitial water. The results indicate that water depth less than 50 cm is favorable for the growth of Z. latifolia, where it can exert its ecological function effectively. This research suggests a possibility to promote the growth of Z. latifolia and exert its ecological function by rational water depth management.  相似文献   

12.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

13.
Coastal ocean primary productivity is often limited by nitrogen (N) availability, which is determined by the balance between N sources (e.g., N-fixation, groundwater, river inputs, etc.) and sinks (e.g., denitrification, sediment burial, etc.). Historically, heterotrophic N-fixation in sediments was excluded as a significant source of N in estuarine budgets, based on low, indirectly measured rates (e.g., acetylene reduction assay) and because it was unnecessary to achieve mass balance. Many recent studies using net N2 flux measurements have shown that sediment N-fixation can equal or exceed N2 loss. In an effort to quantify N2 production and consumption simultaneously, we measured N-fixation and denitrification directly in sediment cores from a temperate estuary (Waquoit Bay, MA). N-fixation, dissimilatory nitrate reduction to ammonium, and denitrification occurred simultaneously, and the net N2 flux shifted from uptake (N-fixation) to efflux (denitrification) over the 120-h incubation. Evidence for N-fixation included net 28N2 and 30N2 uptake, 15NH4 + production from 30N2 additions, 15Norganic matter production, and nifH expression. N-fixation from 30N2 was up to eight times higher than potential denitrification. However, N-fixation calculated from 15NO3 ? was one half of the measured fixation from 30N2, indicating that 15NO3-isotope labeling calculations may underestimate N-fixation. These results highlight the dynamic nature of sediment N cycling and suggest that quantifying individual processes allows a greater understanding of what net N2 fluxes signify and how that balance varies over time.  相似文献   

14.

This study contributes to identifying and spatializing the different types of nitrate sources by combining hydrogeochemical and isotopic data with principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) multicriteria statistical methods. The methodology is applied to the strategic Mons Basin chalk aquifer (Belgium). The results are based on a whole dataset containing 72 water samples with analyses of the hydrogeochemical parameters (temperature, pH, electrical conductivity (EC), redox potential, dissolved O2), alkalinity, total organic carbon (TOC), silica (SiO2), major and minor ions (NO3, NH4+, Ca2+, dissolved Fe and Mn, K+, Mg2+, Na+, Sr2+, Cl, F, SO4, B) and multiple stable isotope ratios (δ11B, δ15N–NO3, δ18O–NO3). Compared to classical PCA, the recently developed t-SNE method, which considers nonlinear relationships between variables and preserves local-scale similarities in a low-dimensional space, showed much better performance in discriminating different groups of samples and related zones in the aquifer. t-SNE results combined with isotope ratios highlighted four zones in the aquifer (grouped as A–D) and the presence of denitrification fronts. Group A presents a manure signature (δ15N–NO3 – mean (μ) +12.78‰, standard deviation (σ) 6.48‰; δ11B – μ 29.96‰, σ 6.91‰). Group B exhibits both manure and inorganic fertilizer signatures (δ15N–NO3μ 6.27‰, σ 2.55‰; δ11B – μ 15.86‰, σ 9.69‰). Group C shows a contamination by sewage (δ15N–NO3μ 12.67‰, σ 5.60‰; δ11B – μ 9.97‰, σ 7.08‰). Group D presents a mixed signature (δ15N–NO3μ 9.25‰, σ 2.94‰; δ11B – μ 20.00‰, σ 6.70‰).

  相似文献   

15.
Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (−7.1 to −2.0‰) of total inorganic N (NH4 ++NO3 ) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 (−9.2 to −5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 . A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.  相似文献   

16.
Methane concentration and the stable carbon isotopic composition (δ 13C-CH4) were measured in aging hydrothermal plume waters originating at the Endeavour Segment, Juan de Fuca Ridge. CH4 concentrations decreased systematically from 600 nM at on-axis stations to <11 nM at a distal station 15 km off axis; background CH4 concentrations are <2 nM. CH4 behaves nonconservatively in plume waters and does not correlate with conservative parameters such as temperature anomaly (Δθ), but is highly correlated with NH4+ and total dissolvable Mn. δ 13C-CH4 values for plume depth samples varies inversely and significantly (R2 = 0.89) with methane concentrations normalized to Δθ. Some δ 13C-CH4 values (+1.8 and +10.9 ‰) measured at the 15 km off-axis station are among the heaviest yet reported from a natural marine environment. Less than 5% of original hydrothermal methane remains in the plume at this station. The data are consistent with extensive microbial methane oxidation. A narrow range of fractionation factors (rc ≈1.0072 to 1.0077) was calculated for the Endeavour samples. These fractionation factors are less than those reported by Coleman et al. (1981), but fall near the trend line of their rc versus temperature data when extrapolated to plume water temperature (∼2 °C).  相似文献   

17.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

18.
Chemical analyses of pore waters from recent marine carbonate sediments, Devil's Hole, Harrington Sound, Bermuda, have been obtained at intervals over a four year period. Interstitial waters were systematically analyzed for pH, titration alkalinity, dissolved sulfides, NH4+, Ca2+, Mg2+ and Na+ or Cl?. Additional analyses on some cores included SO42?, PO43?, dissolved CH4 and N2, and C:N:H ratios in the detrital organic material. The following general trends with depth (to ~ 1 m) are observed: (1) major cations show little or no change; (2) pH decreases; (3) alkalinity, sulfides, NH4+ and PO43? increase; (4) dissolved CH4 is consistently low. The chemical changes with depth can be modelled theoretically and are consistent with experimental data.Significant seasonal changes in pore water chemistry are observed. The data suggest an annual exchange between the pore waters (to a depth of ~ 1 m) and the overlying water of Harrington Sound; the exchange occurs between August and January. The nutrient flux out of the sediments during this process may be a major factor in the plankton ecology of Harrington Sound.  相似文献   

19.
Comprehensive nitrogen biogeochemical cycle has been reconstructed for representative lacustrine organic-rich sedimentary rock in China, namely the Triassic Yanchang Formation (YF, 199–230 Ma) in Ordos and the Cretaceous Qingshankou Formation (QF, 86–92 Ma) in Songliao basins, by evaluating the organic and inorganic nitrogen isotopic compositions rather than only organic or bulk nitrogen isotopic compositions. The results indicate that the nitrogen isotope values of bulk rock (δ15Nbulk) in the non-metamorphic stage are significantly different from that of kerogen, which challenge the conceptual framework of sedimentary nitrogen isotope interpretation. The δ15Nbulk from the YF and QF were lower than their respective the nitrogen isotope values of kerogen (δ15Nker), with offsets up to ~5.1‰, which have the inverse relationship for the metamorphosed rock. Thermal evolution did not significantly modify the δ15N of bulk rock and kerogen. The δ15N of sediments from the YF (δ15Nbulk, 1.6‰–5.6‰) were lower than that of rock from the QF (δ15Nbulk, 10.2‰–15.3‰). The nitrogen isotope values of silicate incorporated nitrogen (δ15Nsil) were slightly lower than those of the δ15Nker in the YF and obviously lower for the QF. The fact that different nitrogen cycles occur in the YF and QF due to the different depositional redox conditions leads to different isotopic results. The YF water environment dominated by oxic conditions is not conducive to the occurrence of denitrification and anammox, and no abundant N2 loss leads to the relatively light δ15Nbulk. In the stratified water for the QF, redox transition zone promotes denitrification and anammox, resulting in the heavy δ15Nbulk of rock and promotes the DNRA, resulting in heavy δ15Nker and low δ15Nsil.  相似文献   

20.
《Applied Geochemistry》2004,19(5):709-719
The potential for exploitation of urban aquifers is partly dependent on understanding the distribution and fate of urban N sources, such as sewage and fertilisers, that can limit the use of groundwater for public supplies. To investigate the application of the dual-isotope approach to understanding the N hydrochemistry of urban groundwater, this paper presents δ15N–NO3 and δ18O–NO3 data collected from two multi-level piezometers in the Sherwood sandstone aquifer beneath Nottingham in the English Midlands, UK. At one multi-level piezometer (Old Basford), depth sample measurements of δ15N–NO3 in the range +9.2 to +11.4 ‰ and δ18O–NO3 in the range +8.2 to +10.9‰, together with NO3 nitrate concentrations from 31.7 to 66.7 mg/l, are evidence for nitrification of sewage-derived inputs. In contrast, at the other multi-level piezometer (the Meadows), isotopically enriched samples (δ15N–NO3 in the range +24.3 to +42.2 ‰ and δ18O–NO3 in the range +20.5 to +29.4‰) are evidence for denitrification, although the compositional range of δ15N–NO3 does not identify the N source without corroborating data. For the Meadows location, a cross-plot of δ15N–NO3 versus δ18O–NO3 gave an enrichment of the 15N isotope relative to the 18O isotope by a factor of 1.9, within the range of 1.3–2.1 reported for denitrification in other studies. This study has shown that the dual-isotope approach provides improved understanding of N sources and fate in the urban environment but further work is required to identify nitrification pathways to provide more confidence in the application and interpretation of δ18O–NO3 measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号