首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
As mobile diamicton sediments move across already deposited sediments whether on land or into oceans generated by either glaciers/ice sheets or landslides, a series of soft-sediment deformation processes occur. These sediments carry signatures of processes at both macro- and micro scales. The processes occur across thin layers of sediment, it is at the microsedimentological scale that deformation structures are detected and is the subject of this paper. Examination of numerous diamicton thin sections of both known glacigenic and non-glacigenic sediments illustrate a myriad of microstructures. Microstructures can be subdivided into brittle, ductile, porewater induced and plasmic fabrics. These fabrics are part of a spectrum of development from grain stacks, to microshear to rotations and, in addition, domains are likely to occur due to scavenging and are all part of a repeating cycle of deformation as sediment is added, eroded, re-transported into the accumulating sediment pile. Diamictons can be subdivided into several levels of abundance of microstructure types from very common to rare to being absent. In general, other than ‘tile’ structures, all diamictons have all types of microstructures. A table is presented illustrating the differentiation of various type of diamictons in terms of microstructure type abundancies in relation to individual environments in which diamictons occur around the past margins of glaciated continents. A distinction can be successfully drawn that allows diamictons to be distinguished and differentiated.  相似文献   

2.
The Chuos Formation is a diamictite-dominated succession of Cryogenian age, variously interpreted as the product of glaciomarine deposition, glacially related mass movement, or rift-related sediment remobilisation in a non-glacial environment. These interpretations have wide ranging implications for the extent of ice cover during the supposedly pan-global Neoproterozoic icehouse. In the Otavi Mountainland, northern Namibia, detailed analysis of soft-sediment deformation structures on the macro- and micro-scale support glacitectonic derivation in response to overriding ice from the south/south-east. Overall, the upward increase in strain intensity, predominance of ductile deformation features (e.g. asymmetric folds, rotational turbates and necking structures, clast boudinage, unistrial plasmic fabrics) and pervasive glacitectonic lamination support subglacial deformation under high and sustained porewater pressures. In contrast, soft-sediment structures indicative of mass movements, including flow noses, tile structures, and basal shear zones, are not present. The close association of subglacial deformation, abundant ice-rafted debris and ice-contact fan deposits indicate subaqueous deposition in an ice-proximal setting, subject to secondary subglacial deformation during oscillation of the ice margin. These structures thus reveal evidence of dynamic grounded ice sheets in the Neoproterozoic, demonstrating their key palaeoclimatic significance within ancient sedimentary successions.  相似文献   

3.
西昆仑山前晚新生代沉积岩磁组构及构造意义   总被引:3,自引:1,他引:3  
西昆仑山前晚新生代沉积岩磁组构特征表明,沉积岩原生磁组构受后期构造活动改变。磁组构测试结果表明晚新生代沉积岩生较明显变形,岩石磁化率椭球体指示磁面理较发育,反映岩石受压扁型变形为主。磁化率椭球体最小轴方向为NW,指示该区最大主压应力为NW,与区域构造分析结果相一致。  相似文献   

4.
《Quaternary Science Reviews》2007,26(11-12):1499-1528
Macroscopic field and micromorphological studies have been carried out on subglacially and proglacially deformed glacigenic sequences at a number of sites throughout Scotland, UK. Examination of microstructures (folds, faults, hydrofractures, plasmic fabrics) aided understanding of the deformation histories preserved in the sediments, but a similar range of structures were developed in both Subglacial and Proglacial settings. Discrimination between Subglacial and Proglacial deformation was only possible when micromorphological data was used in conjunction with larger-scale field observations. Variations in lithology and water content were controlling factors influencing the style and apparent intensity of deformation recorded. Changes in pore-water content and pressure during deformation can lead to liquefaction and hydrofracturing, with early-formed structures locally controlling the pattern of water escape. Liquefaction can also lead to homogenisation of the sediments and the destruction of earlier deformation structures, even at relatively low strains. Beds or zones of liquefied sand and silt may form highly ‘lubricated’ detachments within the sediment pile, resulting in a marked reduction in the amount of shear transmitted to underlying units. A multidisciplinary approach, involving sedimentological, geomorphological, stratigraphical and structural field observations, combined with micromorphological analysis, is recommended to confidently unravel the glacitectonic history and depositional environment of most deformed glacigenic sedimentary sequences.  相似文献   

5.
ABSTRACT Pebble fabric data are available from several facies of glacigenic sediments deposited by modern glaciers, where sedimentary processes can be observed or inferred with relatively little ambiguity. Over 100 samples from contemporary environments illustrate fabrics characterizing melt-out till, deformed and undeformed lodgement till, sediment flow deposits and ice slope colluvium. Lodgement till fabric variability is related to the two-layer structure of these sediments; a structureless, friable upper layer with low shear strength and high consolidation coefficient, overlying a very compact material of horizontal platy structure. Fabric strength (assessed by eigenvalue analysis) is weaker and pebble dip is more dispersed in the upper structureless horizon. Stronger fabrics in the lower platy horizon may be primary depositional fabrics which are destroyed by subglacial shearing to give weaker fabrics in the upper horizon. Alternatively, upper horizon fabrics may be characteristic of all recently-deposited lodgement tills, with stronger fabrics developing at depth by dewatering and consolidation. There is a general reduction in fabric strength and an increase in particle dip associated with the transition from melt-out tills, through undeformed and deformed lodgement tills, to sediment flow deposits and ice slope colluvium. There is, however, considerable overlap in the fabric strengths characteristic of sediment flow deposits and deformed lodgement tills. Fabric data from modern glacial sedimentary facies are used to assist in interpreting the mode of deposition of some Quaternary glacial sediments. Relatively strong fabrics characteristic of melt-out tills and undeformed lodgement tills are more likely to be diagnostic of genesis than weaker fabrics associated with deformed sediments.  相似文献   

6.
The anisotropy of magnetic susceptibility has been proven to be an excellent indicator for mineral fabrics and therefore deformation in a rock or sediment. Low-field anisotropy is relatively rapid to measure so that a sufficient number of samples can be measured to obtain a good statistical representation of the magnetic fabric. The physical properties of individual minerals that contribute to the observed magnetic fabric include bulk susceptibility and intrinsic anisotropy of the mineral phase, its volume concentration, and its degree of alignment. Several techniques have been developed to separate magnetic subfabrics arising from magnetization types, i.e., ferrimagnetism, antiferromagnetism, paramagnetism, and diamagnetism. Susceptibility anisotropy can be measured in low or high fields and at different temperatures in order to isolate a particular subfabric. Measuring the anisotropy of a remanent magnetization can also isolate ferrimagnetic fabrics. A series of case studies are presented that exemplify the value of isolating magnetic subfabrics in a geological context. It is particularly useful in rocks that carry a paramagnetic and diamagnetic subfabric of similar magnitude, such that they negate one another. Further examples are provided for purely paramagnetic subfabrics and cases where a ferrimagnetic subfabric is also identified.  相似文献   

7.
Quartz crystallographic fabric transitions in well-exposed mylonites immediately beneath the Moine Thrust at the Stack of Glencoul (NW Scotland) have been investigated by optical microscopy, X-ray texture goniometry and Orientation Distribution Function analysis. A progressive change is observed from asymmetrical kinked single girdle c-axis fabrics at 0.5 cm beneath the Moine Thrust, through asymmetrical Type I cross-girdle fabrics to symmetrical Type I cross-girdle fabrics at 30 cm beneath the thrust. This c-axis fabric transition is accompanied by a transition from asymmetrical single a-axis maximum fabrics (0.5 cm beneath the thrust) through asymmetrical two maxima fabrics to essentially symmetrical two maxima a-axis fabrics. ODF analysis of these S >L and L - S tectonites indicates that c-axis positions on the ‘leading edge’ of the fabric skeleton are related by a common (a) direction oriented within the XZ plane at a moderate angle to the lineation (X). In contrast, c-axis positions on the peripheral ‘trailing edge’ are related by a positive (r) rhomb pole oriented close to Z; (a) directions lying within this common rhomb plane progressively change through 180° in orientation traced around the c-axis fabric skeleton. Such contrasting ‘single crystal’ rhomb (a) preferred orientations on the ‘leading’ and ‘trailing’ edges of the fabric skeleton are interpreted as indicating localized (grain scale) plane strain and flattening deformation, respectively. They result in tectonites with essentially symmetrical c- and a-axis fabrics which display strongly asymmetrical positive (r) and negative (z) rhomb pole figures. The observed transition in quartz c- and a-axis fabrics is interpreted as indicating an increasing importance of non-coaxial plane-strain deformation as the Moine Thrust is approached. Even immediately (<1 cm) beneath the thrust, however, flow has still significantly departed from bulk simple shear and involved an important (heterogeneous) component of contemporaneous flattening deformation.  相似文献   

8.
9.
Compared to felsic igneous rocks the genetic relationship between brittle and ductile fabric development and its influence on the geometry of deformed mafic melt sheets has received little attention in structural analyses. We explore these relationships using the Sudbury Igneous Complex (SIC) as an example. The SIC is the relic of a layered impact melt sheet that was transformed into a fold basin, the Sudbury Basin, during Paleoproterozoic deformation at the southern margin of the Archean Superior Province. We studied brittle and ductile strain fabrics on the outcrop and map scales in the southern Sudbury Basin, notably in the Norite and Quartz Gabbro layers of the SIC. Here, deformation is heterogeneous and occurred under variable rheological conditions, evident by the development of brittle shear fractures, brittle-ductile shear zones and pervasive ductile strain. The mineral fabrics formed under low- to middle greenschist-facies metamorphism, whereby brittle deformation caused hydrolytic weakening and ductile fabric development. Principal strain axes inferred from all structural elements are collinear and point to a single deformation regime that led to thinning of SIC layers during progressive deformation. Ductile fabric development profoundly influenced the orientation of SIC material planes, such as lithological contacts and magmatic mineral fabrics. More specifically, these planar structural elements are steep where the SIC underwent large magnitudes of thinning, i.e., in the south limb of the Sudbury Basin. Here, the actual tilt component of material planes is likely smaller than its maximum total rotation (60°) inferred from inclined igneous layering in the Norite. Our field-based study shows that ductile fabric development from brittle faults can have a profound influence on the rotational components of primary material planes in deformed igneous melt sheets.  相似文献   

10.
Magnetic fabrics from rocks with multiple mineral-preferred orientations may have anisotropy ellipsoids whose shape and orientation arise from the addition of two or more component fabrics. Our numerical models and experiments demonstrate that such composite magnetic fabrics do not directly reflect the shapes and/or orientations of the individual mineral fabrics and we provide criteria for the recognition and interpretation of composite fabrics in natural rocks. These criteria include:

1. (1) the orientation of the maximum susceptibility axis is located at the intersection of two planar fabrics, and

2. (2) the shape of the susceptibility ellipsoid changes from oblate to prolate and the degree of anisotropy decreases, as the relative intensity of two planar component fabrics becomes equal and as the angle between the planar fabrics increases.

Composite magnetic fabrics are observed in the shales and slates of the Martinsburg Formation, Lehigh Gap, Pennsylvania. Modeling of the AMS (anisotropy of magnetic susceptibility) and ARMA (anhysteretic remanent magnetization anisotropy) behavior constrains the relative degree of anisotropy of the bedding-parallel and cleavage-parallel fabrics. In particular, ARMA model results allow a good estimate of magnetite fabric strength.

We conclude that, in the presence of composite magnetic fabrics, quantitative measures of finite strain in deformed rocks are limited by the ability to accurately determine the degree of anisotropy and relative susceptibility of each component fabric. Such determinations require knowledge of the mineral(s) that are responsible for the measured magnetic fabric and their behavior during deformation.  相似文献   


11.
The progressive development of mylonitic fabrics in a series of Torridonian sandstones and shales has been studied along traverses across the Kishorn Nappe. The fabrics developed have been investigated using the following techniques.
1. 1. Optical examination of thin sections.
2. 2. Measurements of the anisotropy of magnetic susceptibility.
3. 3. X-ray texture goniometry.
The results are used in support of a proposed deformation history of the area and the relative advantages of the techniques used are discussed.The early deformation was well lubricated with layer-parallel sliding and little internal deformation of the rocks, except for development, in the east, of a layer-parallel penetrative fabric with an extension direction to the ESE. This deformation produced a westward facing isoclinal anticline and a recumbent syncline in the Torridonian rocks which became at least partly decoupled from the basement.The important phases of fabric development post date this folding. In the west the sandstones developed a spaced, pressure solution cleavage, but in the east the grain shape fabric has been produced by both dislocation and diffusion processes. The shales reveal more details of the deformation episodes than do the sandstones and thus show different fabric intensities and orientations when measured by magnetic and X-ray techniques.The magnetic anisotropy technique of fabric analysis gives a rapid method of mapping the deformation domains formed by different deformation mechanisms and intensities. However, the rocks carry several magnetic components and these have different anisotropy tensors and different responses to deformation, also, measurements made at high fields (5 kOe) give magnitudes and orientations of the magnetic anisotropy tensor which are different from those made at low fields. It is concluded that it is not possible to relate variations in the magnitude and shape of the magnetic anisotropy ellipsoid quantitatively to the deformation.Chlorite and muscovite fabrics measured by X-ray techniques show variations in intensity and orientation similar to those of the magnetic anisotropy ellipsoid due to paramagnetic minerals. However, the data demonstrate the difficulty of correlating this fabric intensity with deformation intensity where there has been a change in deformation mechanisms with time and space.  相似文献   

12.
The Aar Massif forms part of the polycyclic basement of the External Crystalline Massifs in central Switzerland. Strong heterogeneous Alpine deformation produced a network of broad, anastomosing shear zones, with deformation strongly localized in mylonitic domains. This study investigates the combined effects of high‐strain deformation and synkinematic metamorphism on magnetic fabric evolution in Tertiary shear zones of the Aar granite and Grimsel granodiorite. In transects across several mesoscale shear zones with large strain gradients, magnetic fabric orientations are in excellent agreement with principal strain orientations determined from outcrop fabrics and strain markers. However, the magnitude and shape of the magnetic anisotropy do not change systematically with increasing finite strain, likely as a result of recrystallization and metamorphism. The overall pattern of steeply dipping fabrics is consistent with the main shortening stage of regional Alpine kinematics, while some mylonite structures reflect a local component of dextral shearing.  相似文献   

13.
Oriented samples of sediments from Ariyalur Group, Cauvery Basin, south India, were studied for low field anisotropy of magnetic susceptibility (AMS) measurements to unravel the magnetic fabrics and paleocurrent directions. The results of AMS parameters of the sediments indicate primary depositional fabrics for Sillakkudi, Ottakovil and Kallamedu sandstone formations and secondary fabric for Kallankurichchi limestone formation. The obtained low degree of anisotropy (P j ), oblate shape AMS ellipsoid and distribution of maximum (K 1) and minimum (K 3) susceptibility axes on equal area projection confirm the primary sedimentary fabric for Sillakkudi, Ottakovil and Kallamedu Formations. In the case of ferruginous, lower arenaceous, Gryphaea limestone and upper arenaceous limestone beds of Kallankurichchi Formation have recorded more than one fabric. The observed AMS parameters like shape factor (T) (prolate to oblate), q value and random distribution of minimum (K 3) and maximum (K 1) susceptibility axes are supported for secondary fabrics in Kallankurichchi Formation as a result of post-depositional processes. Based on petrographic studies, it can be established that K 1 AMS axis of biotite mineral could represent the flow direction. The established paleocurrent direction for Sillakkudi is NW–SE direction while Ottakovil and Kallamedu Formations recorded NE–SW direction. Overall the paleoflow directions observed for Ariyalur Group is NE–SW to NW–SE.  相似文献   

14.
This paper describes the results of a spatially dense anisotropy of magnetic susceptibility (AMS) till fabric study of a single drumlin in the Weedsport Drumlin Field, New York State, USA. AMS till fabrics provide a robust, quantitative and unbiased approach to assess subglacial till kinematics and infer ice‐flow dynamics. The drumlin selected for this detailed investigation was systematically sampled at 18 locations to evaluate the patterns of ice flow and associated till kinematics within a drumlin and to test erosional vs. depositional models for its formation. AMS till fabric analysis yielded strong fabrics that increase in strength towards the drumlin crest, indicating that bed deformation occurred during till deposition and that deformation within the drumlin was greater than that in the interdrumlin low. Fabric orientations reveal drumlin convergent, divergent and parallel ice‐flow paths that illustrate a complex interaction between ice flow and the drumlin form; fabric strength and shape reveal systematic differences in bed deformation between the interdrumlin and drumlin regions. These observations are inconsistent with purely erosional models of drumlin genesis; instead, these observations are more consistent with syndepositional streamlining of till transported, probably locally as a deforming bed, from the interdrumlin low towards the drumlin locality.  相似文献   

15.
This paper focuses on the formative processes of limestone pseudoconglomerates in the Gushan and Chaomidian Formations (Late Cambrian) of the North China Platform, Shandong Province, China. The Gushan and Chaomidian Formations consist mainly of limestone and shale (marlstone) interlayers, wackestone to packstone, grainstone and microbialite as well as numerous limestone conglomerates. Seventy‐three beds of limestone pseudoconglomerate in the Gushan and Chaomidian Formations were analysed based on clast and matrix compositions, internal fabric, sedimentary structures and bed geometry. These pseudoconglomerates are characterized by oligomictic to polymictic limestone clasts of various shapes (i.e. flat to undulatory disc, blade and sheet), marlstone and/or grainstone matrix and various internal fabrics (i.e. intact, thrusted, edgewise and disorganized), as well as transitional boundaries. Limestone pseudoconglomerates formed as a result of soft‐sediment deformation of carbonate and argillaceous interlayers at a shallow burial depth. Differential early cementation of carbonate and argillaceous sediments provided the requisite conditions for the formation of pseudoconglomerates. Initial deformation (i.e. burial fragmentation, liquefaction and injection) and subsequent mobilization and disruption of fragmented clasts are two important processes for the formation of pseudoconglomerates. Burial fragmentation resulted from mechanical rupture of cohesive carbonate mud, whereas subsequent mobilization of fragmented clasts was due to the injection of fluid materials (liquefied carbonate sand and water‐saturated argillaceous mud) under increased stress. Storm‐wave loading was the most probable deformation mechanism, as an external triggering force. Subsequent re‐orientation and rounding of clasts were probably prolonged under normal compactional stress. Eventually, disrupted clasts, along with matrix materials, were transformed into pseudoconglomerates by progressive lithification. Soft‐sediment deformation is prevalent in alternate layers of limestone and mud(marl)stone and/or grainstone, regardless of their depositional environments.  相似文献   

16.
Field and laboratory investigations of the Triassic Budra Formation of Wadi Budra, south-west Sinai, have demonstrated the existence of surface pedogenic laterites developed within‘overbank facies’of fluviatile sediments during times of hiatus. The laterite profiles, up to 7 m thick, comprise a zone of high-iron concentrations (21.47–73.17%) which includes a concretionary unit and either overlies a zone of slightly mottled host rock or rests directly upon unaltered sandstone; a pallid zone is noticeably absent. The primary depositional horizontal fabric of the finely laminated sediments of the‘overbank facies’ has strongly influenced the final fabric of the laterite. The pronounced alternations of iron-rich pisolitic and iron-deficient laminae highlight the influence of inherent fabric (primary bedding) on pedogenesis. The micromorphology of the laterites is characterized by bimasepic plasmic fabrics, abundant elongate voids partially infilled with cryptocrystalline kaolinite and an abundance of randomly oriented skew planes. Illuviation of clay minerals to considerable depths is evident. Sesquioxidic and kaolinitic glaebules, concentrated within the concretionary units of the laterite have a flattened ellipsoidal shape and occur as both massive and concentrically structural varieties. At Gebel Mussaba Salama to the north, zoned iron mineralization occurs at various levels within the fluviatile sandstones which underlie the‘overbank facies’. This is interpreted as being a non-pedogenic, ground water alteration phenomenon induced by a rising water table within the buried alluvial channels. Iron mineralization, probably records minor fluctuations of the water table during standstill periods. Lateritization in the Triassic Budra Formation provides important evidence that the widely recorded late Triassic lateritization and bauxitization event of the neighbouring East Mediterranean countries, extended south to the continental areas bordering the Tethyan Ocean.  相似文献   

17.
During the ascent, emplacement and post-emplacement deformation of igneous rocks, two or more phases of deformation that overprint each other are often depicted. These overprints, when magnetic minerals are present, are recorded in magnetic fabric. In this contribution, overprints are studied by means of numerical modeling, following several basic scenarios common to igneous rocks. Biotite and amphibole that occur often together in igneous rocks are considered as carriers of the anisotropy of magnetic susceptibility. Modeling shows that (1) a constrictional fabric with a low degree of anisotropy as commonly recorded in magmatic rocks may result from a deformation overprint and not necessarily from an extensional/transtensional regime, and (2) that the constrictional AMS fabrics originates from orthogonal superimposition of a deformation event on an AMS fabric inherited from earlier magma emplacement history. Therefore, the interpretation of a constrictional fabric must be performed with caution. Numerical modeling may provide a suitable help in strengthening the interpretation of real magnetic fabric data.  相似文献   

18.
龙门山飞仙关断层传播褶皱磁组构特征及构造意义   总被引:3,自引:0,他引:3  
沿龙门山南段冲断前锋带飞仙关断层传播褶铍剖面钻取了270个磁组构定向岩芯样品,对其进行了磁性矿物与磁组构分析。通过等温剩磁和三轴热退磁实验确定了样品中的主要载磁矿物为赤铁矿。磁组构测试结果显示27个采样点的磁组构为中间组构与构造组构两种类型。通过对各点磁组构特征及各项磁组构参数进行详细分析,再结合断层传播褶皱运动学模型,得出断层传播褶皱形成过程中岩石应变及磁组构演化:断层扩展前的平行层缩短作用把原始的沉积组构改造成为中问组构;在断层扩展过程中,两翼地层的旋转抬升产生的简单剪切作用对地层磁化率各向异性产生影响,使得校正的磁化率各向异性度Pj值局部升高,以及在剪切变形强烈的区域形成构造磁组构。  相似文献   

19.
A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness ( ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.  相似文献   

20.
磁化率各向异性测量在沉积学中的应用   总被引:5,自引:1,他引:5  
许峰宇  王力波 《沉积学报》1994,12(2):94-100
本文利用磁化率各向异性来研究南京下蜀土的沉积组构?根据南京下蜀上的磁组构特征及其与华北黄土的对比分析,探讨了下蜀土的成因,并进而指出了磁化率各向异性测量对于沉积学的重要意义?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号