首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dead Sea is the lowest spot on Earth. It is a closed saline lake located in the middle of the Jordan Rift Valley between Lake Tiberias and the Red Sea. Its major tributaries are the Jordan River itself and the Dead Sea side wadis. The Dead Sea has a unique ecosystem and its water has curative, industrial and recreational significance. The level of the Dead Sea has been continuously falling since the early 1930s at an average rate of 0·7 m per year. The water level, as of February 1998, is about 410·9 m below mean sea level. In this paper, a water balance model is developed for the Dead Sea by considering different hydrological components of this water balance, including precipitation, runoff, evaporation and groundwater flow. This model is calibrated based on historical levels of the Dead Sea. Different scenarios are investigated, including the proposed Dead Sea–Red Sea Canal. This project is supposed to halt the shrinking of the Dead Sea and restore it to pre‐1950 levels in the next century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The Easter (Rapanui) microplate is a case example of a large dual spreading center system in a region where the fastest seafloor spreading on Earth is occurring today. Recent theoretical models of the tectonic evolution of dual spreading center systems have explored the effects of shear and rigid rotation on the boundaries and internal structure of microplates but the models must be critically constrained by improved relative motion and structural fabric data sets.During the January 1987 Rapanui expedition on the N/O “Jean Charcot” we conducted a Sea Beam/magnetics/ gravity survey of a portion of the microplate boundaries. The method that was used was to fully map selected portions of the boundaries in order to establish precise structural relationships. The northern terminus of the East Rift or eastern boundary of the microplate is expressed as a series of parallel NW-SE trending valleys including what appears to be, with 5890 m depth, the deepest active rift axis mapped in the Pacific today (Pito Rift).The northern end of the Pito Rift merges with an E-W to 083° narrow band of linear faults interpreted to be a transform fault between the Nazca and Easter (Rapanui) plates.The northern triple junction between the Easter (Rapanui), Nazca and Pacific plates is a RFF type with the two transform faults colinear along an approximately E-W direction.The southwestern boundary of the Easter (Rapanui) microplate is marked by a series of en-echelon offsets, outlined by depressions, which merge into an approximately E-W zone where shear must be predominant.The southern triple junction is a RRF junction with an overlapping ridge system.The structural data acquired during the survey provide strong constraints for kinematic models of the microplate. The structural data need to be combined with crustal age determinations in order to derive a model for the evolution of the microplate.  相似文献   

3.
3-D simulations of elastic wave propagation generated by earthquakes with magnitudes between 5.5 and 7.0 are used to parameterize strong ground motion attenuation relations for the Dead Sea Rift (DSR) graben structure. The results show that standard attenuation relations with an isotropic distance parameter are inadequate for a graben structure with a deep sedimentary trough. A new strategy is devised for the parameterization of attenuation relations in graben structures by looking at the statistical properties of 53 simulated earthquakes of variable magnitudes located at various sites along the western boundary fault of the DSR graben. An exemplary attenuation relation is designed from the synthetics for the 1 Hz spectral acceleration, modifying the Joyner-Boore-type parametrization by adding coefficients suited for three different source-to-sensor configurations: within the graben, beyond the graben and path unaffected by the graben structure.  相似文献   

4.
Although the precise boundaries and kinematics of the Sinai subplate are still doubtful, it has a significant role in the tectonic evolution of the northern Red Sea region. On the basis of earthquake distribution, the Sinai region can be considered as a subplate partially separated from the African plate by the Suez rift. The relative motion between Africa, Sinai and Arabia is the main source generating the present-day earthquake activity in the Gulf of Suez and the Gulf of Aqaba regions.According to geological observations, the southern segment of the Dead Sea fault system can be characterized by a left-lateral displacement of about 107km since the Middle Miocene, in contrast to the northern segment where only 25 to 35km offset can be inferred. We think that along the southern segment the total displacement was 72km until the late Miocene (10Ma). The earthquake activity is strongly reduced along the northern segment of the Dead Sea fault segment. Therefore, we suggest that the northern part (Yammouneh fault) evolves through initial cracking of the crust due to build-up of stress since the Pliocene time (5Ma) and propagates northward into Lebanon and Syria. This last 5 million years is the period when the southern and northern segments became linked and formed a single fault system with a new displacement of 35km.According to the proposed model the predicted opening pole of the Red Sea is near 34.0oN, 22.0oE with an angle of total rotation of 3.4o since the early miocene, providing a 0.82cm/a opening rate in the northern Red Sea. We suggest that the Dead Sea strike-slip fault was active since Middle Miocene time (15Ma) with a slip rate of 0.72cm/a to provide a total displacement of about 107km. This strike slip motion occured about an Euler pole near 33.0oN, 21.0oE with a rotation angle of about 3.0o. It can be inferred from the proximity of the pole and angle of rotations for the Red Sea and Dead Sea fault that more than 85% of the motion has been accommodated on the Gulf of Aqaba and the Dead Sea fault and less than 15% in the Gulf of Suez.This model predicts a normal extensional motion in the Gulf of Suez with a minor left-lateral strike-slip component. We expect the pole of this motion to be at 31.0oN, 29.0oE, offshore of Alamein city about 320 km west of the Nile Delta. The rate of motion through the last 15Ma (Middle Miocene) is about 0.1 cm/a and the angle of rotation is 0.9o. During this period the total opening of the Suez rift is 15 km while the rest of the motion (45 km) occured mainly through the first phase of the development before the Middle Miocene.  相似文献   

5.
Several morphotectonic features trending NW-SE have been reported along the continental slope of Israel, and the Palmahim structure served as a model for their present tectonic interpretation. It is suggested that the Palmahim structure is a large strike-slip fault, extending from the continental shelf to the marine Levantine Platform along some 80 km, and is associated with various secondary faulted and folded structures. The fault has been active apparently since at least the Upper Miocene, but the intensity of the tectonic activity seems to have decreased since the Pleistocene. There are grounds to assume that the NW-SE-trending faults in the continental slope correlate to the tectonic activities in the Coastal Plain and in the Dead Sea Rift Valley.  相似文献   

6.
Extensive microearthquake studies have been conducted in Egypt as a joint project between scientists from the Egyptian Geological Survey and Mining Authority (EGSMA) and U.S. scientists. At this stage, a great part of the data has been analyzed and two intensively active areas have been located: one in the Abu Dabbab area of the Eastern Desert, the second at the mouth of the Gulf of Suez near Gubal Island (Daggett et al., 1980). Both sites have been reported to be the epicenters of large earthquakes in 1955 and 1969, respectively. A few scattered earthquakes have also been located in the northern part of the Red Sea, some of which lie along its median axis (Daggett et al., 1986) adding to evidence for the medial opening of the northern Red Sea. After the occurrence of an earthquake (M = 5.5) in the Aswan region on 14 November 1981, continuous recording of the many aftershocks was carried out by EGSMA for about seven months from December 1981 to July 1982, when the temporary network was replaced by a network of telemetered seismographs installed and operated by Helwan Institute of Astronomy and Geophysics in cooperation with scientists from Lamont and Doherty Geological Observatory (LDGO). The majority of epicenters are concentrated in the vicinity of G. Marawa about 65 km upstream of Aswan Dam, along the E-W Kalabsha fault. The observed focal mechanism is consistent with a right-lateral strike-slip motion on the Kalabsha fault. Analysis of Aswan microearthquakes has been done by EGSMA in cooperation with scientists from California Division of Mines and Geology (CDMG).  相似文献   

7.
The Dead Sea is a hypersaline terminal lake located in the Rift Valley between Jordan and Israel. In this work a generalised mathematical model describing the behaviour of the Dead Sea has been developed. The model established the condition of the Sea by evaluating a series of ordinary differential equations describing mass balances on the water and major chemical species in the Sea. The Sea was modelled as a two-layer system. The model was validated by comparing its predictions to measured level records. The results obtained highlighted the importance of detailed evaporation modelling, showed the necessity to model the Sea as a two-layer system, validated the usage of average distribution data to estimate the flowrates of rivers, and justified ignoring diffusion effects in further modelling. The model predicted that in the case of continuing current conditions, the level will continue to decline, at a decelerating rate, because the area and evaporation rate are both decreasing. Under these conditions, the model shows that the salinity of both layers will continue to increase, and that seasonal stratification and seasonal crystallisation of gypsum and aragonite will continue.  相似文献   

8.
The Feshcha springs issue in a 4 km long strip on the Dead Sea shores. They constitute two separate groups: a) T-N waters, similar in their salt composition, temperature and radon content to the many other members of the Rift Valley “Tiberias-Noit water association”. The hydrologic, radon, tritium and carbon-14 indicate they are mixtures of recent meteoric waters with ancient (trapped) T-N waters of an age of at least 18000 years. b) Z-Y waters which, like other members of the Dead Sea basin “Zohar-Yesha water group”, originate by a mixing of T-N waters with Dead Sea waters. This is seen in the chemical compositions and is confirmed by the oxygen-18 and deuterium data.  相似文献   

9.
Most of the known pit craters in Hawaii occur along the East and Southwest Rift Zones of Kilauea volcano. The pit craters typically are either astride a single rift zone fracture or between a pair of rift zone fractures. These fractures are prominent in the pit crater walls. The pit craters are elliptical in plan view, with their major diameters ranging from 8 to 1140 m. They range in depth from 6 m to 186 m. They typically develop with initially steep, locally overhanging walls, but as the walls collapse, the craters fill with talus and become shaped like inverted elliptical cones. None of the craters apparently formed as eruptive vents, although some have been subsequently filled by lava. Devil's Throat is the best-exposed pit crater along the East Rift Zone. It is sited at a `waist' between two east-striking zones of ground cracks; the spacing between the crack zones decreases towards Devil's Throat. East-striking fractures are also prominent in the pit crater walls. Pit craters along the Southwest Rift Zone typically are elongate in plan view along the direction of the rift, have large caves at their bases along the long axes of the craters, and are smaller than those of the East Rift Zone. Some closely spaced pits there have coalesced to form a trough. Based on our observations and mechanical considerations, we infer that pit craters form by stoping over an underlying large-aperture rift zone fracture, and not by piston-like collapse over broad magma bodies or voids. Flow of magma along the underlying fracture may remove stoped blocks and prevent the fracture from being choked with debris. This mechanism is consistent with pit crater location, ground crack patterns, the preferred orientation of fractures in pit crater walls, and pit crater geometry (both in map view and cross-section). The mechanism also fits with observations of stoping into a gaping rift fracture that conducted lava from Kilauea caldera during the 1920s. Additionally, the ratio of pit crater width to depth of 0.5 to 2 is consistent with pit craters forming over a nearly vertical opening mode fracture.  相似文献   

10.
Abstract This paper provides untilted paleomagnetic data obtained from the early Miocene strata around the Kanazawa‐Iozen area, in the eastern part of south‐west Japan. A thick pile of volcaniclastics and marine transgressive sediments underlie the area; they were deposited in the early stage of the Japan Sea opening event. Progressive thermal demagnetization tests isolated stable primary magnetic vectors from eight sites in the upper part of the Iozen Formation. Overall, the tilt‐corrected mean direction of this unit is D = 36.4°, I = 51.6° and α95 = 12.1. Together with a published paleomagnetic and chronological database, the present results suggest that clockwise rotation of south‐west Japan, linked to the back‐arc opening, commenced in the early Miocene and accelerated at the same time as rapid subsidence along the Japan Sea coast. Post‐opening, differential rotation within the eastern part of south‐west Japan is assumed, based on selected paleomagnetic data from the latest Early Miocene.  相似文献   

11.
日本本州及其邻近区域的应力状态以及弧后盆地的演化机制一直是人们所关注的问题.本文对2011年3月11日东日本大地震地震序列(2011年3月11日至2012年3月15日)的哈佛双力偶解进行了聚类分析,得到五种类型的震源机制解:与主震类型一致的低倾角逆断层型地震;主张应力方向垂直于日本海沟走向的正断层型地震;主张应力方向平行于日本海沟走向的正断层型地震;主压应力方向平行于日本海沟走向的逆断层型地震;包括走滑型地震在内的其他类型地震.东日本大地震地震序列中发生在弧前增生楔地震的震源机制解与大地震发生之前地震的震源机制解特征有显著区别,反映出该地区的应力状态与震前相比有较大改变.东日本大地震及其前震释放了附近区域的累积弹性应力,主震破裂区附近太平洋板块和其上覆板块接近完全解耦,降低了日本海盆地、中国东北地区的近东西向挤压应力水平.不过,整个本州岛东部区域太平洋板块和其上覆板块并没有完全解耦,但应力水平并不高.我们认为,日本海及中国东北应力水平的降低会使该区域的近东西向挤压型地震的危险性降低,而使NNE-SSW走向的走滑型地震活动性增强.同时,火山活动性也会增强.尤其是本州岛地区,存在近期火山爆发的可能性.东日本大地震地震序列的震源机制解特征还提示我们,日本海的应力状态及日本海的演化可能在一定程度上取决于太平洋板块和上覆板块的耦合状态.持续的弱耦合将不仅使得弧后大范围的地区保持岩浆上涌所必须的拉伸应力环境,而且还会因弧前隆起区发育大量正断层型地震而向深部提供促使岩浆生成所必须的水,因而造成日本海的再次扩张.  相似文献   

12.
Japan Sea: a pull-apart basin?   总被引:1,自引:0,他引:1  
Recent field work in the Hokkaido Central Belt and marine geology studies along the eastern margin of Japan Sea in addition to previously published data lead us to propose a new model of opening of the Japan Sea. The synthesis of both on-land and offshore structural data gives new constraints about the structural evolution of the system. The rhombohedral shape of the Japan Basin and the particular tectonic behaviour of the margins on both east and west sides can be explained by an early Eo-Oligocene rifting of a pull-apart basin accommodated along two large right-lateral shear zones, east of Korea and west of northeast Japan and Sakhalin. It is followed, during Upper Oligocene/Lower Miocene, by the main opening of the Japan Basin as a mega pull-apart. Then a back-arc spreading probably related to the subduction process, induced the creation of the Yamato and Tsushima Basins at the end of Lower Miocene and in Middle Miocene. Clockwise rotation of southwest Japan larger than 20° or major bending of Honshu mainland deduced from paleomagnetic studies is unlikely at this time. Since 1 or 2 My B.P. to Present, compression prevails along the eastern margin of the Japan Sea. The generation of marginal basins as pull-apart basins along intracontinental strike-slip faults is a mechanism which has been proposed by other authors concerning the South China Sea, the question then is whether the fragmentation of the Asiatic continent is an intracontinental deformation related process as proposed here or a subduction related one.  相似文献   

13.
The Neoproterozoic Kangdian Rift Basin is a continental rift basin in the western Yangtze Continent. Determining its time of opening and subsequent filling pattern is an important aspect of understanding the formation and evolution of the Yangtze Continent, South China. The Luliang Formation is the early filling in the eastern part of this rift basin, and its deposition age and filling sequence are significant for studies of the regional stratigraphic correlation, opening time, and filling pattern of this basin. Having been correlated to the upper part of the Mesoproterozoic Kunyang Group or to the Neoproterozoic Chengjiang Formation, the age and regional stratigraphic correlation of the Luliang Formation have long been uncertain. This is due to a lack of reliable absolute age constraints. To address this issue, the first zircon SHRIMP U-Pb geochronology has been established for this formation, yielding two high-precision isotopic ages of 818.6±9.2 and 805±14 Ma for the tuff layers at the bottoms of the lower and upper members of the Luliang Formation, respectively. Given the error factor, the bottom age of the lower member of the Luliang Formation can be interpreted as ca. 820 Ma, corresponding to the bottom age of the lower part of the Banxi Group, which is the early filling of the Neoproterozoic Xianggui Rift Basin, a representative basin of the Neoproterozoic rift basins in the Yangtze Continent, South China. The bottom age of the upper member of the Luliang Formation can be interpreted as ca. 800±5 Ma, corresponding to the bottom age of the Chengjiang Formation in the western part of the Neoproterozoic Kangdian Rift Basin and also corresponding to the bottom age of the upper part of the Banxi Group in the Neoproterozoic Xianggui Rift Basin. These ages indicate that the Neoproterozoic Kangdian Rift Basin shares the same opening time and filling sequences as those of the other Neoproterozoic rift basins in South China. Basin analysis shows that the Neoproterozoic Kangdian Rift Basin is a typical half-graben basin, with its main boundary fault in the west and basin center in the east. This basin consisted of mini unidirectional half-graben basins in its juvenile stage and simplified to become a large united half-graben basin in its mature stage, i.e., a supradetachment basin.  相似文献   

14.
The spreading processes within the West Philippine Basin (WPB) remain partly unknown. This study presents an analysis of the tectono-magmatic processes that happened along its spreading axis during the conclusion of the last spreading phase at 33/30 Ma. We demonstrate that the late episode of N-S opening from an E-W-trending spreading system has been followed by a late tectonic event occurring in the central and eastern parts of the basin. This event was responsible for transtensional strain accommodated along the NW-SE faults cutting through the former E-W rift valley in the central part of the basin. In its eastern part, the same event occurred at a larger extent and led to the creation of a new NW-SE axis, obliquely cutting the older E-W spreading segments and their associated spreading fabrics. At this location, several tens of kilometers of slightly oblique amagmatic extension occurred following a ∼60° direction. We propose that this late event is associated with the onset of E-W opening of the Parece-Vela Basin located along the eastern border of the WPB at 30 Ma. Extensive stresses within this basin were probably transmitted to the hot and easily deformable rift zone of the WPB. The newly-created NW-SE axis most likely propagated from east to west, being responsible for scissors opening within the WPB. NE-SW extension ceased when well-organized spreading started at 26 Ma in Parece-Vela Basin, accommodating entirely the global extensive stress pattern.  相似文献   

15.
This work deals with the tectonic interpretation of an alignment of more than 300 sinkholes stretching along the Jordanian coast of the Dead Sea, Ghor Al Haditha area. Its dimensions are 6 km long with a width of 600 m. Sinkholes appeared during the last decades as a consequence of the very rapid lowering of the lake level. The linear shape was inferred from ground collapse inventories carried out between 1991 and 2008. The lineament is replaced and analyzed in its structural setting at regional and local scales. Its direction (N 24° E) is sub‐parallel to the ones displayed by many focal mechanisms, especially the one associated with the earthquake of the 23 April, 1979 (mb = 5·1; N 20° E ± 5°), which is representative of all focal mechanisms calculated on a fault plane compatible with the general direction of the Jordan‐Dead Sea Transform fault system for the east coast of the Dead Sea area. The alignment of sinkholes is constituted by 13 minor linear segments separated by as many empty spaces. Four minor linear units present an en‐echelon arrangement from which one can deduce the presence of a local extensional stress field. In this context, the sinkhole locations provide information of subsurface discontinuities interpreted as hidden fractures. In a close future, such results could support the work of decision‐makers and engineers in the projected development of the area. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mouth basin, the continental rifting and early spreading stage from 32 to 26 Ma were controlled by extensional stress field, which shifted clockwise from southeastward to south southeastward. From 24 Ma on, the sea spread in NW-SE direction and ceased spreading at around 15.5 Ma. Integrated geological information with the assumption that the South China Sea developed along a pre-Cenozoic weakness zone, we did analogue experiments on the South China Sea evolu- tion. Experiments revealed that the pre-existing weakness zone goes roughly along the uplift zone between the present Zhu-1 and Zhu-2 depression. The pre-existing weakness zone is composed of three segments trending NNE, roughly EW and NEE, respectively. The early opening of the South China Sea is accompanied with roughly 15° clockwise rotation, while the SE sub-sea basin opened with SE extension. Tinjar fault was the western boundary of the Nansha block (Dangerous Ground), while Lupar fault was the eastern boundary of the Indochina, NW-trending rift belt known as Zengmu basin developed between above two faults due to block divergent of Indochina from Nansha. In the experiment, transtensional flower structures along NW-trending faults are seen, and slight inversion occurs along some NE-dipping faults. The existence of rigid massifs changed the orientations of some faults and rift belt, and also led to deformation concentrate around the massifs. The rifting and drifting of the South China Sea might be caused by slab pull from the proto South China Sea subducting toward Borneo and/or mantle flow caused by India-Asia collision.  相似文献   

17.
High-resolution reconstruction of Benioff zone depth–dip angle trajectory for Burma–Java subduction margin between 2° and 17°N Lat. reveals two major episodes of plate geometry change expressed as abrupt deviation in subduction angle. Estimation of effective rate of subduction in different time slices (and then length of subducted slab) allowed drawing of isochrones in Ma interval through these trajectories for the time period 5–12 Ma. With these isochrones, the deformation events on the subducting Indian plate are constrained in time as of 4–5 and 11 Ma old. This well-constrained time connotation offered scope for the correlation of slab deformation events with the well-established two-phase opening history of the Andaman Sea. While the 11 Ma event recorded from southern part of the study area is correlated with early stretching and rifting phase, the 4–5 Ma event is interpreted as major forcing behind the spreading phase of the Andaman Sea. Systematic spatio-temporal evaluation of Indian plate obliquity on the Andaman Sea evolution shows its definite control on the early rifting phase, initiated towards south near northwest Sumatra. The much young spreading phase recorded towards north of 7° Lat. is possibly the result of late Miocene–Pliocene trench retreat and follow-up transcurrent movement (along Sagaing and Sumatran fault system) with NW–SE pull-apart extension.Nonconformity between plate shape and subduction margin geometry is interpreted as the causative force behind Mid-Miocene intraplate extension and tearing. Enhanced stretching in the overriding plate consequently caused active forearc subsidence, recorded all along this plate margin. Initial phase of the Andaman Sea opening presumably remains concealed in this early–middle Miocene forearc subsidence history. The late Miocene–Pliocene pull-apart opening and spreading was possibly initiated near the western part of the Mergui–Sumatra region and propagated northward in subsequent period. A temporary halt in rifting at this pull-apart stage and northeastward veering of the Andaman Sea Ridge (ASR) are related with uplifting of oceanic crust in post-middle Miocene time in form of Alcock and Sewell seamounts, lying symmetrically north and south of this spreading ridge.  相似文献   

18.
2018年1月23日,在美国阿拉斯加湾海域发生了一次MW7.9地震.震源机制解表明这次地震以走滑为主,可能发生在近东西向或南北向的陡倾角断层上,早期余震并非线型展布.我们利用视震源时间函数分析确定了此次地震的总体破裂方向,并结合余震的空间展布特征构建了相互交叉的双断层模型,进而通过联合反演远场P波和SH波数据获得了此次地震的时空破裂过程.视震源时间函数分析表明总体破裂方向既非东西也非南北,而且反演结果表明,两个断层上都发生了错动,总体破裂时间~50 s,释放标量地震矩~8.11×1020 Nm.震源时间函数表现出多事件特征,且两个断层破裂的时间过程也不相同.破裂首先在南北向断层的南端开始,很快触发了东西向断层,最后终止于南北向断层的北端.每个断层都具有相当的时空复杂性,位错分布很不均匀.东西向断层具有三个凹凸体,一个位于震源附近,其他两个位于断层两端.南北向断层有两个凹凸体,均位于断层北段,最大滑动量~5.0 m就出现在这里.发生最大位错的南北向断层延伸至阿拉斯加海沟,增加了触发阿拉斯加海沟其他断层发生破裂的可能性.  相似文献   

19.
During March and April 1984, a temporary network of 29 portable stations was operated in the region of the Mygdonian graben near Thessaloniki (northern Greece), where a destructive earthquake (Ms = 6.5) had occurred in the Summer of 1978. During a period of six weeks we recorded 540 earthquakes with magnitudes ranging from −0.2 to 3.0. From this set of data, 254 events are selected which according to us have a precision in epicenter and depth better than 1.5 km. A total of 54 single-event focal mechanisms have been determined.The seismicity and focal mechanisms show a rather complex pattern. There are no clear individual faults, but the E-W and NW-SE striking zones show N-S extension. Zones striking NNE-SSW show dextral strike-slip motion but NW-SE zones with sinistral strike-slip are also observed.In the center of the graben where the 1978 earthquake was located, we observe several thrust mechanisms distributed in two groups showing either NW-SE or E-W compression; these earthquakes seem to be located 2 km above the earthquakes showing normal mechanisms.The mean direction of the T-axes, found from the focal mechanisms, trends N15° and dips sub-horizontal.We propose a model for the formation and evolution of a complex graben system comprising several stages. In the initial stage the deformation occurs along pre-existing NW-SE or NNE-SSW faults, with normal or strike-slip movements. In the second stage, a new, E-W trending group of normal faults is formed over the ancient fault network. These new faults have a direction perpendicular to the mean T-axis and accommodate better the actual state of stress. At this stage the initial faults adjust to the deformation produced by the E-W trending new faults, and may constitute geometric barriers to the evolution of the new normal faults.  相似文献   

20.
The Gulf of Elat, located at the northern Red Sea, is a rift that forms the southern section of the Dead Sea rift system. A recent high-resolution seismic reflection survey showed that lenticular grabens and axial anticlines are the predominant structures at the rift floor. Structural relationships suggest that after the lenticular graben was formed at the rift floor, it was filled with sediments. Axial uplift along the rift caused the widening of the graben and the development of axial anticlines, and at a later stage a new graben started to develop between the flank of the anticline and the boundary fault of the rift. The data indicate that the tectonic regime affecting the southern Dead Sea rift is one of uplift and extension, acting simultaneously. It is presumed that upwelling of magma in the upper mantle, extending northwards from the Red Sea, is the cause for these uplift and extensional phenomena, and that the Gulf of Elat is an incipient spreading center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号