首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A detailed molluscan succession from a 10 m thick deposit of Holocene tufa at St Germain‐le‐Vasson, Normandy, provides the most complete record from northern France and has shed new light on the historical biogeography of several species of land snail. The succession has been reconstructed from four profiles and a chronology provided by accelerator mass spectrometry radiocarbon dating of charcoal, wood and shell. The onset of tufa formation occurred after 9700±90 yr BP and persisted until 4213±77 yr BP. The tufa appears to have accumulated at a remarkably constant rate (14.4–16.5 cm 100 yr?1), except for the upper levels, where the rate increases fourfold. The succession has been divided into six local molluscan zones. An early assemblage consisting of ecologically tolerant species and those indicative of marshy grassland is replaced by a sequence of shade‐demanding taxa, reflecting the encroachment of woodland. Shaded conditions persist until the end of the sequence but the most hygrophilous elements decline after 5422±60 yr BP (zone 5), a change also reflected in the tufa lithology by the development of silty grey horizons. Notable species recovered from the tufa include Acicula fusca, Vertigo substriata, V. alpestris, V. moulinsiana (all rare or unknown living in northern France). Hygromia limbata, a twentieth century introduction to Britain, was previously thought to be a relatively recent arrival in northern France, but its record at St Germain shows that it has been present in Normandy since 6500 yr BP. Azeca goodalli, another shade‐demanding species, appeared at St Germain much later, just after 4420±65 yr BP. Several other species present in the tufa, such as Pomatias elegans, no longer live on the site, adding to the evidence for a distributional decline in Normandy and elsewhere. Perhaps the most noteworthy record is that of Leiostyla anglica, between about 8500 yr BP and 5000 yr BP, because this constitutes its only Holocene occurrence from mainland Europe. Following this discovery it seems likely that further Holocene sites with L. anglica may be found along the western seaboard of Europe connecting populations in Iberia with those of the British Isles. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr) geochemistry from bulk tufa calcite and ostracod shell calcite from an early Holocene British tufa reveal clear records of Holocene palaeoclimatic change. Variation in δ18O is caused principally by change in the isotopic composition of Holocene rainfall (recharge), itself caused mainly by change in air temperature. The δ13C variability through much of the deposit reflects increasing influence of soil‐zone CO2, owing to progressive woodland soil development. Bulk tufa Mg/Ca and Sr/Ca are controlled by their concentrations in the spring water. Importantly, Mg/Ca ratios are not related to δ18O values and thus show no temperature dependence. First‐order sympathetic relationships between δ13C values and Mg/Ca and Sr/Ca are controlled by aquifer processes (residence times, CO2 degassing and calcite dissolution/reprecipitation) and probably record intensity of palaeorainfall (recharge) effects. Stable isotope records from ostracod shells show evidence of vital effects relative to bulk tufa data. The ostracod isotopic records are markedly ‘spiky’ because the ostracods record ‘snapshots’ of relatively short duration (years), whereas the bulk tufa samples record averages of longer time periods, probably decades. The δ18O record appears to show early Holocene warming, a thermal maximum at ca. 8900 cal. yr BP and the global 8200 yr BP cold event. Combined δ13C, Mg/Ca and Sr/Ca data suggest that early Holocene warming was accompanied by decreasing rainfall intensity. The Mg/Ca data suggest that the 8200 yr BP cold event was also dry. Warmer and wetter conditions were re‐established after the 8200 yr BP cold event until the top of the preserved tufa sequence at ca. 7100 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Palaeolimnological reconstruction of the aquatic environment in Lake Komo?any, based on sedimentology, geochemistry, and diatom and macrofossil analyses in the littoral part of the basin, reflects the mid‐Holocene history of the profile from its origin c. 9100 cal. a BP to its final transformation into an alder carr c. 4100 cal. a BP. The existence of the littoral zone can be best explained by increased precipitation during the studied interval. A stable diatom community, diatom‐inferred total phosphorus (50–80 μg L?1) and pH (~7.6), along with stable concentrations of elements associated with changes in its watershed indicate a long‐lasting, balanced aquatic environment with no major shifts attributable to external factors, including climate change. From c. 4700 cal. BP, there started a transition to terrestrial conditions, caused by either natural infilling processes or decreased precipitation. Alternation of remarkable dry/wet phases was not detected, in contrast to numerous analogous central European and supraregional records. Potential human impact was revealed through increases of Corylus and Populus pollen in the Neolithic. These anthropogenic changes in the lake surroundings had no detectable influence on the lacustrine environment. The gathered data suggest undramatic, balanced mid‐Holocene environmental and climatic settings for this central European locality, in direct contrast to numerous analogous studies from the region emphasizing fluctuations and shifts found in the sediment record.  相似文献   

5.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

7.
Tufa deposits are potential terrestrial archives of palaeoenvironmental and palaeoclimatic information. This study assesses the potential of stable isotopic archives from two closely juxtaposed Holocene tufa sites in SE Spain. The Ruidera site contains deep‐water lacustrine micrites and tufas, whereas the nearby Alcaraz site represents a shallow barrage tufa. Understanding site characteristics is critical to interpreting the stable isotopic variations. These Holocene lacustrine micrites have isotopic compositions consistent with modern European lake shore microbial carbonates, where the isotopic chemistry is strongly influenced by hydrological and residence time effects. All the lacustrine micrite δ13C values were influenced by microenvironmental microbial effects to some degree. Because of these effects, stable isotope data from lacustrine microbial micrites and tufas will not normally yield precise information on the isotopic composition of palaeoprecipitation, temperature or vegetation composition of an area. In contrast, Holocene tufas that formed in shallow, fast‐flowing riverine settings may contain valuable palaeoclimatic archives. The tufa deposits must be largely autochthonous, as at Alcaraz, where in situ reed stem encrustations are present. Records of relative change in air temperature and changes in the source of airmasses are potentially resolvable in the δ18O data. These interpretations can be verified by other independent climatic data where chronology is constrained. Variations in riverine tufa δ13C values probably record changes in local vegetation and/or soil respiration. Covariation between δ18O and δ13C values may be intrinsically linked to climatic factors such as aridity. Tentative palaeoclimatic interpretations for the middle Holocene at Alcaraz based on the isotope data suggest warming (or increasing influence of Mediterranean‐sourced precipitation) between approximately 5000–3000 radiocarbon years BP, accompanied by increased aridity. These interpretations are consistent with the sparse independent palaeoclimatic data and climate modelling results for the Holocene of SE Spain. This study supports the growing evidence that well‐chosen tufa sites could yield valuable palaeoclimatic information.  相似文献   

8.
《Quaternary Science Reviews》1999,18(8-9):1075-1125
Holywell Coombe is a valley cut into the scarp-face of the North Downs Chalk cuesta, near Folkestone, Kent. Its geological importance stems from a highly fossiliferous sequence of Lateglacial and Holocene deposits that line the valley floor. These have yielded a molluscan succession of particular importance, providing a record of environmental change throughout the past 13,000 radiocarbon years. Waterlogging of the basal deposits has prevented oxidation, leading to the preservation of a range of organic fossils, such as plant and insect remains, that normally do not survive in calcareous environments. This enables linkage between faunal and vegetational records, allowing the differential rates of response of particular groups to be critically compared. The importance of the site was revealed in 1968 in trial pits connected with an aborted Channel Tunnel project. Resurrection of plans to build a tunnel led in 1987 to major ‘rescue’ excavations and multidisciplinary investigations, the results of which are reviewed here. A three-dimensional picture of the valley infill was established from a network of 180 boreholes. Critical parts of the sequence were investigated in specially excavated trenches and sections exposed during construction of the tunnel. Systematic sampling at a number of locations within the valley provided a palaeontological record from the full stratigraphical succession. A number of Lateglacial and Holocene soils were found to be represented in the sequence, including that formed during the Allerød phase of the Lateglacial interstadial. The molluscan zonation scheme previously defined at Holywell Coombe, and applicable over large areas of southern Britain and possibly further afield, has been refined and dated with greater precision. The Lateglacial sequence has been extended back to the early part of the Lateglacial interstadial by this study and the site chronology is now underpinned by over 35 new radiocarbon dates. Quantitative palaeoclimatic reconstructions from beetle remains, using the Mutual Climatic Range method, cover the period between 13,000 and 9000 yr BP. The earliest sediments, marsh deposits with thermophilous insect taxa and a species-poor molluscan assemblage, date from around 13,000–12,000 yr BP. Just before the end of this period, changes in beetle faunas record climatic cooling, heralding slope instability and the accumulation of thick colluvial deposits. By 11,500 yr BP the climate had stabilized and slope movement had ceased, allowing the formation of the ‘Allerød soil’. There followed a major deterioration to the arctic climate of the Younger Dryas, during which renewed erosion from the valley sides brought further material onto its floor, burying and sealing the earlier sediments. The beginning of the Holocene saw the onset of tufa formation around two dominant springs in the upper valley. There was progressive development of forest, hazel-dominated woodland being established by 9500 yr BP. There is some evidence for thinning of the forest canopy during the late Mesolithic and Neolithic, but the major clearance occurred during the Early Bronze Age, causing renewed instability on slopes and consequent hillwash accumulation. This final depositional phase continued, with pauses marked by soil formation in the Early Bronze Age and the Iron Age, to the present day. The hillwash seals structures relating to prehistoric human activity, including plough-marks, and contains an extensive sequence of artefacts.  相似文献   

9.
Pedley  Hill  Denton  & Brasington 《Sedimentology》2000,47(3):721-737
Unlithified and partly lithified carbonate sequences are ideally suited to the application of ground‐penetrating radar (GPR), augmented by percussion augering and shallow seismic techniques, all tied to present‐day topography using global positioning system (GPS) methods. This methodology provides the first clear information on the distribution and geometry of lithofacies within buried tufa complexes. The approach has been applied to a thick succession of Holocene tufas filling a gorge site along a 3·5‐km length of the River Lathkill, north Derbyshire. Earlier studies have demonstrated the presence of up to 16 m of tufas and sapropels associated with two transverse tufa dams (barrages). These strata have been accumulating throughout the Holocene, although tufa developments at present are of minor extent. Internal tufa morphologies are recorded by GPR as ‘bright’, laterally continuous reflections for lithified, concretionary and lithoclast‐rich horizons. The ‘brightest’ reflectors occur within well‐cemented barrages and delineate core areas and prograding buttress zones. In contrast, unlithified lime muds and sapropels produce low‐contrast reflections. Lithostratigraphic control and depth calibration of the GPR profiles was provided by percussion augering at selected sites. Six distinct lithofacies and four secondary barrages are identified in the study. Constructional and destructional events can be identified and correlated within the GPR profile network, and the internal growth morphologies of the barrages are apparent. GPR profiles also clearly define the evolution of the facies geometries. Three phases of tufa development can be recognized within the GPR data and greatly extend our understanding of Holocene tufa‐forming processes in valley sites: (a) Early Holocene barrage build‐ups but with limited paludal deposition; (b) Middle Holocene ponding and sapropel accumulation under ‘warm’ conditions; and (c) Late Holocene barrage termination and valley levelling, probably coincidental with anthropogenic activity. This type of multidisciplinary approach should be considered as an essential prerequisite to all biostratigraphic and geochemical studies of Holocene freshwater carbonate sites.  相似文献   

10.
A combination of AMS14C dating and tephrochronology has been used to date late Holocene oceanographic events in a 335 cm marine record, covering about 4600 cal. yr with sedimentation rates exceeding 80 cm 1000 yr−1. The core site is located 50 km offshore on the northern Icelandic shelf. Tephra markers from Iceland serve to correlate the marine and terrestrial records. Especially notable is the presence of three geochemically correlated tephra markers from the Icelandic volcano Hekla (Hekla 4, Hekla 3 and Hekla 1104). Benthic and planktonic foraminiferal abundance and distribution as well as the petrography of the sand fraction of the muddy shelf sediments are used as palaeoceanographic proxies. The foraminiferal assemblages reflect a general cooling trend during the last 4600 yr. A marked drop in sea‐surface temperatures is registered at about 3000 cal. yr BP, corresponding to the level of the Hekla 3 tephra. There is faunal indication of temperature amelioration during the Medieval Warm Period and a cooling again during the Little Ice Age. Periods of ice rafting events are indicated by ice rafted debris (IRD) concentrations, e.g. at around 3000 cal. yr BP and during the Little Ice Age. The former event occurred just prior to the deposition of the Hekla 3 tephra marker, the largest Holocene Hekla eruption. A correlation with terrestrial climatic events in Iceland is presented. A standard marine reservoir correction of 400 14C yr appears to be reasonable, at least during periods with high influence of water masses from the Irminger Current on the northern Icelandic shelf. An increase to ca. 530 14C yr may have occurred, however, when water masses derived from the East Greenland Current were dominant in the area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cal yr BP when Pinus ponderosa became established. C/N ratios, δ13C and δ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.  相似文献   

12.
We present a Holocene record of floristic diversity and environmental change for the central Varanger Peninsula, Finnmark, based on ancient DNA extracted from the sediments of a small lake (sedaDNA). The record covers the period c. 10 700 to 3300 cal. a BP and is complemented by pollen data. Measures of species richness, sample evenness and beta diversity were calculated based on sedaDNA sampling intervals and 1000‐year time windows. We identified 101 vascular plant and 17 bryophyte taxa, a high proportion (86%) of which are still growing within the region today. The high species richness (>60 taxa) observed in the Early Holocene, including representatives from all important plant functional groups, shows that modern shrub‐tundra communities, and much of their species complement, were in place as early as c. 10 700 cal. a BP. We infer that postglacial colonization of the area occurred prior to the full Holocene, during the Pleistocene‐Holocene transition, Younger Dryas stadial or earlier. Abundant DNA of the extra‐limital aquatic plant Callitriche hermaphroditica suggests it expanded its range northward between c. 10 200 and 9600 cal. a BP, when summers were warmer than present. High values of Pinus DNA occur throughout the record, but we cannot say with certainty if they represent prior local presence; however, pollen influx values >500 grains cm?2 a?1 between c. 8000 and 7300 cal. a BP strongly suggest the presence of pine woodland during this period. As the site lies beyond the modern tree limit of pine, it is likely that this expansion also reflects a response to warmer Early Holocene summers.  相似文献   

13.
Luoto, T. P. & Sarmaja‐Korjonen, K. 2011: Midge‐inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland. Boreas, 10.1111/j.1502‐3885.2011.00217.x. ISSN 0300‐9483. We examined fossil midge (Diptera: Chironomidae) assemblages from Lake Várddoaijávri, northern Finland to track Holocene effective moisture variability. Application of a midge‐based water‐depth calibration model showed that the early Holocene was characterized by a high water level compared with the Holocene average, but the inferred values decreased at c. 8000 cal. a BP and increased again towards c. 6000 cal. a BP. The inferred water level decreased at c. 5500 cal. a BP, but increased again towards c. 4000 cal. a BP. Between 4000 and 3000 cal. a BP the lake experienced two rapid events of lower water level. A relatively high water level detected at c. 3000 cal. a BP was followed by a lowering towards c. 2000 cal. a BP. The time period from c. 2000 cal. a BP onwards was characterized by a general rise in lake level towards the present. Overall, the present reconstruction shows a close correspondence in its trends to previous lake‐level records in the region. Two common core taxa, Paratanytarsus and Corynocera ambigua, did not correlate significantly with water depth in the calibration data, creating a potential error source for the present lake‐level reconstruction. However, statistical analysis showed a clear community response to long‐term lake‐level changes, and therefore the major trends in Holocene effective moisture patterns were revealed. The present palaeoclimatic information can also serve as valuable background data when assessing the effects of the present climate change.  相似文献   

14.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

15.
Sedimentary pollen, charcoal and plant macrofossil analyses with high resolution and precision suggest a strong shift in vegetation composition during the early to mid‐Holocene transition in the upper mountain belt. At Piano mire (1439 m above sea level (a.s.l.), Ticino, Switzerland) forests were dominated by Abies alba during the early Holocene (prior to ca. 8000 cal. a BP). Abrupt collapses of A. alba at ca. 7800–7400 cal. a BP enabled the expansion of the light‐demanding pioneer Betula. Afterwards A. alba populations regained their previous abundance in the forests. Within the dating uncertainties of our record we assume that a unique combination of wet and cold years between 8400 and 7500 cal. a BP led to repeated lethal disadvantages for Abies. Our record of Abies oscillations is in good biostratigraphic agreement with the record that has been used to define the Misox cold event (Pian di Signano, 1540 m a.s.l.), which has been previously correlated with the 8200 cal. a BP event. Given the age estimates of the Abies collapses in our well‐dated record, our results suggest that additional efforts are needed to understand the linkage between the Misox and the 8200 cal. a BP event. They imply a high sensitivity of mountain vegetation far below the tree line (~800 m) to Holocene climatic changes of about 2°C in annual air temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar‐lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20 m of core FUENT‐1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50 cal. ka BP. Arid phases identified in the FUENT‐1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n‐C27 and an increase in the n‐C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2–8.6, 7.5–7 and 5.5–5 cal. ka BP. In dolomite–mud facies, the pollen data show an increase in the herbs component, mainly – Chenopodiaceae, Artemisia and Ephedra – steppe taxa; a low Paq index, a decrease in the relative percentage of the n‐C27 alkane and an increase in the n‐C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline–alkaline conditions, which can be interpreted as linked to arid–warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT‐1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50 cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The long‐term history of vegetation and fire was investigated at two locations – Soledad Pond (275 m; from ca. 12 000 cal. a BP) and Abalone Rocks Marsh (0 m; from ca. 7000 cal. a BP) – on Santa Rosa Island, situated off the coast of southern California. A coastal conifer forest covered highlands of Santa Rosa during the last glacial, but by ca. 11 800 cal. a BP Pinus stands, coastal sage scrub and grassland replaced the forest as the climate warmed. The early Holocene became increasingly drier, particularly after ca. 9150 cal. a BP, as the pond dried frequently, and coastal sage scrub covered the nearby hillslopes. By ca. 6900 cal. a BP grasslands recovered at both sites. Pollen of wetland plants became prominent at Soledad Pond after ca. 4500 cal. a BP, and at Abalone Rocks Marsh after ca. 3465 cal. a BP. Diatoms suggest freshening of the Abalone Rocks Marsh somewhat later, probably by additional runoff from the highlands. Introduction of non‐native species by ranchers occurred subsequent to AD 1850. Charcoal influx is high early in the record, but declines during the early Holocene when minimal biomass suggests extended drought. A general increase occurs after ca. 7000 cal. a BP, and especially after ca. 4500 cal. a BP. The Holocene pattern closely resembles population levels constructed from the archaeological record, and suggests a potential influence by humans on the fire regime of the islands, particularly during the late Holocene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In general, mires develop by autogenic succession from more groundwater‐fed to more rainwater‐fed. This study from a calcareous mire in the West Carpathians (Slovakia) describes a similar development in the Early Holocene, followed by a reverse development in the Middle and Late Holocene. Pollen, macrofossil and testate amoeba analyses show that the site started as a minerotrophic open fen woodland. After 10 700 cal a BP autogenic succession led to the accumulation of at least 1 m of Sphagnum fuscum peat. Around 9000 cal a BP, as climate could no longer sustain a stable water regime, the bog desiccated and a fire broke out. The fire removed part of the peat layer and as a consequence relative water levels rose, leading to the establishment of a wet minerotrophic swamp carr with Thelypteris palustris, Equisetum sp. and Alnus sp. with extremely slow peat accumulation. After 600 cal a BP, rapid peat accumulation with calcareous tufa formation resumed as a result of anthropogenic deforestation and hydrological changes in the catchment and resulting increased groundwater discharge. At present the mire still hosts a wealth of relict and endangered plant and animal species typical of calcareous fens and fen meadows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
From the synthesis of the malacological data collected from 12 sites in the large flood‐plain of the Seine basin, three main environmental stages have been reconstructed. During the first half of the Holocene, forest environments are prevalent (Seine 1). As early as c. 6.5 cal. ka BP, the first evidence of woodland clearance is observed (Seine 2) and, from c. 3.4 cal. ka BP, the lowlands were largely cleared of trees and are dominated by grassland (Seine 3). This three‐stage development of environmental conditions is consistent with the environmental developments reconstructed from molluscan successions in England, Germany, Luxembourg, Switzerland, Poland, the Czech Republic and Slovakia. Our results highlight anthropogenic disturbance as the key factor in the openness of the Holocene landscape and pinpoint the period between c. 3.6 and c. 2.8 cal. ka BP as a transitional phase of this large‐scale environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号