首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
黑洞也可以蒸发天文学的发展遵循着一条规律:观测、理论、再观测、再理论……这大概也是任何一门自然科学的发展规律,只不过天文学表现得更为突出,而在漫长的发展过程中,观测又始终是天文科学的真谛。因此,天文学又被称为是一门观测的科学。黑洞的观测证据越来越丰富,黑洞对宇宙的威胁也越来越严重。理论天文学家必须出来释疑,让黑洞不仅能吃进去,还要吐出来。吐出来的困难在于黑洞的引力太强,在黑洞的视  相似文献   

2.
正黑洞是广义相对论预言的一种强引力时空区域,其中光子都难于逃脱引力束缚。随着现代天文观测进展,特别是LIGO引力波的发现,黑洞不再神秘,已被逐渐揭开面纱。它们普遍存在于宇宙之中。利用世界最大光学红外望远镜的长期监测,大质量黑洞可以肯定存在于银河系中心。越来越多的证据表明几乎所有星系的中心包含着大质量黑洞,它们的尺度比宿  相似文献   

3.
大多数天文学家认为黑洞在宇宙中并不罕见,但由于它们不寻常特征,从未有人直接观测到一个黑洞。最近,戈达德空间飞行中心的多兰认为哈勃空间望远镜可能提供了黑洞存在的第一个直接证据。  相似文献   

4.
近年来的天文观测发现了暗能量的存在,因而有必要讨论暗能量条件下的黑洞热力学。该文应用约化相空间量子化方法研究了被Quintessence包围的静态球对称黑洞的视界面积量子化问题,给出了面积谱。  相似文献   

5.
宇宙信息     
钱德拉X射线天文台和欧洲空间局的XMM-Newton航天器观测到来自黑洞的X射线,获得了一些证明存在自旋黑洞的最有力的证据。 恒星质量黑洞是由大质量恒星形成的,从其伴星吸积气体和物质。在黑洞引力的作用下气体被吸积,  相似文献   

6.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

7.
1989年哈勃空间望远镜升空以来,随着钱德拉X射线望远镜、斯必泽空间红外望远镜升空,以及许多地面大型观测设备的启用。关于黑洞的大量观测证据不断出现.不但使人们确信黑洞的存在,而且最令人惊奇的是,黑洞的存在形式和产生机,制,远比人们想像的要复杂得多。  相似文献   

8.
研究位于星系中心的黑洞是很困难的大量的物质正在落向活动黑洞系统的中心,并且据说这些下落物质正在供给黑洞能量,但是天文学家对这种动力机制还缺乏了解。一个关键的原因是这些黑洞太远,天文  相似文献   

9.
黑洞研究的新突破@卢方军黑洞研究的新突破最近,从美国传来喜讯,三位年轻的旅美中国科学家张双南、崔伟和陈莞在黑洞自转及其时空拖曳效应领域的研究中连续取得突破性成果。在世界上首次发现黑洞自转和自转黑洞拖曳其周围时空的观测证据,给国际天体物理学界带来轰动,并引起...  相似文献   

10.
黑洞也可以蒸发 天文学的发展遵循着一条规律:观测、理论、再观测、再理论……这大概也是任何一门自然科学的发展规律,只不过天文学表现得更为突出,而在漫长的发展过程中,观测又始终是天文科学的真谛。因此,天文学又被称为是一门观测的科学。  相似文献   

11.
Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the “death of while holes”. So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a ‘Small Bang’, is spontaneous - all the matter is ejected at a single pulse. Thus, unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. γ-ray bursts are the most energetic explosions in the universe. Long γ-ray bursts were connected with supernova eruptions. There is a new group of γ-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of γ-ray bursts that appear in voids. We also predict the detection of rare gigantic γ-ray bursts with energies much higher than typically observed.  相似文献   

12.
Shadow formation around supermassive black holes were simulated. Due to enormous progress in observational facilities and techniques of data analysis researchers approach to opportunity to measure shapes and sizes of the shadows at least for the closest supermassive black hole at the Galactic Center. Measurements of the shadow sizes around the black holes can help to evaluate parameters of black hole metric. Theories with extra dimensions (Randall–Sundrum II braneworld approach, for instance) admit astrophysical objects (supermassive black holes, in particular) which are rather different from standard ones. Different tests were proposed to discover signatures of extra dimensions in supermassive black holes since the gravitational field may be different from the standard one in the general relativity (GR) approach. In particular, gravitational lensing features are different for alternative gravity theories with extra dimensions and general relativity. Therefore, there is an opportunity to find signatures of extra dimensions in supermassive black holes. We show how measurements of the shadow sizes can put constraints on parameters of black hole in spacetime with extra dimensions.  相似文献   

13.
The compact dark objects with very large masses residing at the centres of galaxies are believed to be black holes. Due to the gravitational lensing effect, they would cast a shadow larger than their horizon size over the background; the shape and size of this shadow can be calculated. For the supermassive black hole candidate Sgr A*, this shadow spans an angular size of about 50 μas, which is under the resolution attainable with the current astronomical instruments. Such a shadow image of Sgr A* will be observable at about 1 mm wavelength, considering the scatter broadening by the interstellar medium. By simulating the black hole shadow image of Sgr A* with the radiatively inefficient accretion flow model, we demonstrate that analysing the properties of the visibility function can help us determine some parameters of the black hole configuration, which is instructive for the submillimetre Very Long Baseline Interferometry (VLBI) observations of Sgr A* to be made in the near future.  相似文献   

14.
The problem of few black holes becomes important in multiple mergers of galaxies. If supermassive black holes in centres of galaxies are common, then interaction of three or four supermassive black holes should also be common. The merger of two galaxies with one black hole each produces a semi-stable black hole binary system. Subsequent mergers of galaxies with their own central black holes produces dynamical few-body evolution in which mergers of black holes occur. According to our numerical simulations this evolution typically ends when only one or two black holes remain and, in the latter case, they are ejected in opposite directions from the center of the galaxy. Even when we pick the initial black hole masses at random from a wide distribution, the two black hole ejections happen rather symmetrically. Sometimes the final masses differ considerably in which case only the lighter black hole is ejected. This is caused by the potential barrier of the galaxy itself which prevents the heavy slowly moving black hole flying out of the galaxy. We discuss OJ287 as a possible example of a multiple black hole system.  相似文献   

15.
简要介绍有关黑洞的理论及其表现形式,详细综述在星系中心及X射线双星中搜寻和证认黑洞的原理、方法及现状.在星系层次,除活动星系核中心可能存在的黑洞外,在邻近星系中已找到至少11个黑洞候选者,但观测所及的最小尺度仍比黑洞视界高几个量级。在恒星层次,利用动力学判据,人们己在大质量X射线双星和软X射线暂现源中找到至少10个强候选者,并利用辐射判据找到更多的候选者,但目前仍然没有找到黑洞双星区别于中子星双星的决定性判据.所有这些说明,迄今尚未找到充足的证据证明黑洞的存在。  相似文献   

16.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

17.
There is increasing evidence that supermassive black holes in active galactic nuclei (AGN) are scaled-up versions of Galactic black holes. We show that the amplitude of high-frequency X-ray variability in the hard spectral state is inversely proportional to the black hole mass over eight orders of magnitude. We have analysed all available hard-state data from RXTE of seven Galactic black holes. Their power density spectra change dramatically from observation to observation, except for the high-frequency (≳10 Hz) tail, which seems to have a universal shape, roughly represented by a power law of index −2. The amplitude of the tail,   C M   (extrapolated to 1 Hz), remains approximately constant for a given source, regardless of the luminosity, unlike the break or quasi-periodic oscillation frequencies, which are usually strongly correlated with luminosity. Comparison with a moderate-luminosity sample of AGN shows that the amplitude of the tail is a simple function of black hole mass,   C M = C / M   , where   C ≈ 1.25 M Hz−1  . This makes   C M   a robust estimator of the black hole mass which is easy to apply to low- to moderate-luminosity supermassive black holes. The high-frequency tail with its universal shape is an invariant feature of a black hole and, possibly, an imprint of the last stable orbit.  相似文献   

18.
Recent observations indicate that many if not all galaxies host massive central black holes. In this paper we explore the influence of black holes on the lensing properties. We model the lens as an isothermal ellipsoid with a finite core radius plus a central black hole. We show that the presence of the black hole substantially changes the critical curves and caustics. If the black hole mass is above a critical value, then it will completely suppress the central images for all source positions. Realistic central black holes are likely to have masses below this critical value. Even in such subcritical cases, the black hole can suppress the central image when the source is inside a zone of influence, which depends on the core radius and black hole mass. In the subcritical cases, an additional image may be created by the black hole in some regions, which for some radio lenses may be detectable with high-resolution and large dynamic range VLBI maps. The presence of central black holes should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.  相似文献   

19.
I review the evidence for stellar mass black holes in the Galaxy. The unique properties of the soft X-ray transient (SXTs) have provided the first opportunity for detailed studies of the mass-losing star in low-mass X-ray binaries. The large mass functions of these systems imply that the compact object has a mass greater than the maximum mass of a neutron star, strengthening the case that they contain black holes. The results and techniques used are discussed. I also review the recent study of a comparison of the luminosities of black hole and neutron star systems which has yielded compelling evidence for the existence of event horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号