首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a new nonlinear monotone finite volume method for diffusion equation and its application to two-phase flow model. We consider full anisotropic discontinuous diffusion or permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which provides the conventional seven-point stencil for the discrete diffusion operator on cubic meshes. We show that the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water breakthrough time. We compare two two-point flux approximations (TPFA), the proposed nonlinear TPFA and the conventional linear TPFA, and multipoint flux approximation (MPFA). The new nonlinear scheme has a number of important advantages over the traditional linear discretizations. Compared to the linear TPFA, the nonlinear TPFA demonstrates low sensitivity to grid distortions and provides appropriate approximation in case of full anisotropic permeability tensor. For nonorthogonal grids or full anisotropic permeability tensors, the conventional linear TPFA provides no approximation, while the nonlinear flux is still first-order accurate. The computational work for the new method is higher than the one for the conventional TPFA, yet it is rather competitive. Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational expensive. Moreover, it is monotone which means that the discrete solution preserves the nonnegativity of the differential solution.  相似文献   

2.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   

3.
The two-scale continuum model is widely used in simulating the reactive dissolution process and predicting the optimum injection rate for carbonate reservoir acidizing treatment. The numerical methods of this model are currently based on structured grids, which are not applicable for complicated geometries. In this study, a general numerical scheme for simulating a reactive flow problem on both structured and unstructured grids is presented based on the finite volume method (FVM). The convection and diffusion terms involved in the reactive flow model are discretized by using the upwind scheme and two-point flux approximation (TPFA), respectively. The location of the centroid node inside each control volume is moved by using an optimization algorithm to make the connections with the surrounding elements as orthogonal as possible, which systematically improves the accuracy of the TPFA scheme. Additionally, in order to avoid the computational complexity resulting from the discretization of the non-linear term, the mass balance equation is only discretized in the spatial domain to get a set of ordinary differential equations (ODEs). These ODEs are coupled with the reaction equations and then solved using the numerical algorithm on ODEs. The accuracy and efficiency of the proposed method are studied by comparing the results obtained from the proposed numerical method with previous experimental and numerical results. This comparison indicates that, compared with the previous methods, the proposed method predicts the wormhole structure more accurately. Finally, the presented method is used to check the effect of the domain geometry, and it is found that the geometry of the flow domain has no effect on the optimum injection velocity, but the radial domain requires a larger breakthrough volume than the linear domain when other parameters are fixed.  相似文献   

4.
Improved and enhanced oil recovery methods require sophisticated simulation tools to predict the injected flow pass together with the chemical reactions inside it. One approach is application of higher-order numerical schemes to avoid excessive numerical diffusion that is very typical for transport processes. In this work, we provide a first step towards higher-order schemes applicable on general polyhedral and corner-point grids typically used in reservoir simulation. We compare three possible approaches of linear reconstruction and slope limiting techniques on a variety of different meshes in two and three spatial dimensions and discuss advantages and disadvantages.  相似文献   

5.
在煤层气排采分析及数值模拟研究中,煤储层结构的三维建模是数值模拟和结果分析的起点,具有关键作用。三维长方体等传统网格,难以表达地层的起伏变化,角点网格具有表达起伏变化地层的优势。从煤层气动态可视化的角度出发,基于角点网格建立了煤储层三维地质模型。研究了角点网格模型的数据特点及生成角点网格的方法,采用C#编程语言并结合OpenGL图形接口,开发了煤储层三维可视化软件模型,利用该模型表达了山西省沁水盆地潘庄区块的煤储层地质构造。结果表明,角点网格适用于煤储层三维模型的构建,能较好的表达煤层的结构特征。   相似文献   

6.
Multiscale mixed/mimetic methods on corner-point grids   总被引:1,自引:0,他引:1  
Multiscale simulation is a promising approach to facilitate direct simulation of large and complex grid models for highly heterogeneous petroleum reservoirs. Unlike traditional simulation, approaches based on upscaling/downscaling, multiscale methods seek to solve the full flow problem by incorporating subscale heterogeneities into local discrete approximation spaces. We consider a multiscale formulation based on a hierarchical grid approach, where basis functions with subgrid resolution are computed numerically to correctly and accurately account for subscale variations from an underlying (fine-scale) geomodel when solving the global flow equations on a coarse grid. By using multiscale basis functions to discretise the global flow equations on a (moderately sized) coarse grid, one can retain the efficiency of an upscaling method and, at the same time, produce detailed and conservative velocity fields on the underlying fine grid. For pressure equations, the multiscale mixed finite-element method (MsMFEM) has been shown to be a particularly versatile approach. In this paper, we extend the method to corner-point grids, which is the industry standard for modelling complex reservoir geology. To implement MsMFEM, one needs a discretisation method for solving local flow problems on the underlying fine grids. In principle, any stable and conservative method can be used. Here, we use a mimetic discretisation, which is a generalisation of mixed finite elements that gives a discrete inner product, allows for polyhedral elements, and can (easily) be extended to curved grid faces. The coarse grid can, in principle, be any partition of the subgrid, where each coarse block is a connected collection of subgrid cells. However, we argue that, when generating coarse grids, one should follow certain simple guidelines to achieve improved accuracy. We discuss partitioning in both index space and physical space and suggest simple processing techniques. The versatility and accuracy of the new multiscale mixed methodology is demonstrated on two corner-point models: a small Y-shaped sector model and a complex model of a layered sedimentary bed. A variety of coarse grids, both violating and obeying the above mentioned guidelines, are employed. The MsMFEM solutions are compared with a reference solution obtained by direct simulation on the subgrid.  相似文献   

7.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   

8.
This paper investigates different variants of the multipoint flux approximation (MPFA) O-method in 2D, which rely on a transformation to an orthogonal reference space. This approach yields a system of equations with a symmetric matrix of coefficients. Different methods appear, depending on where the transformed permeability is evaluated. Midpoint and corner-point evaluations are considered. Relations to mixed finite element (MFE) methods with different velocity finite element spaces are further discussed. Convergence of the MPFA methods is investigated numerically. For corner-point evaluation of the reference permeability, the same convergence behavior as the O-method in the physical space is achieved when the grids are refined uniformly or when grid perturbations of order h 2 are allowed. For h 2-perturbed grids, the convergence of the normal velocities is slower for the midpoint evaluation than for the corner-point evaluation. However, for rough grids, i.e., grids with perturbations of order h, contrary to the physical space method, convergence cannot be claimed for any of the investigated reference space methods. The relations to the MFE methods are used to explain the loss of convergence. Wheeler was partially supported by NSF grant DMS 0411413 and the DOE grant DE-FGO2-04ER25617. Yotov was supported in part by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0411694 and the J. Tinsley Oden Faculty Fellowship, The University of Texas at Austin.  相似文献   

9.
This paper presents a finite-volume method for hexahedral multiblock grids to calculate multiphase flow in geologically complex reservoirs. Accommodating complex geologic and geometric features in a reservoir model (e.g., faults) entails non-orthogonal and/or unstructured grids in place of conventional (globally structured) Cartesian grids. To obtain flexibility in gridding as well as efficient flow computation, we use hexahedral multiblock grids. These grids are locally structured, but globally unstructured. One major advantage of these grids over fully unstructured tetrahedral grids is that most numerical methods developed for structured grids can be directly used for dealing with the local problems. We present several challenging examples, generated via a commercially available tool, that demonstrate the capabilities of hexahedral multiblock gridding. Grid quality is discussed in terms of uniformity and orthogonality. The presence of non-orthogonal grid and full permeability tensors requires the use of multi-point discretization methods. A flux-continuous finite-difference (FCFD) scheme, previously developed for stratigraphic hexahedral grid with full-tensor permeability, is employed for numerical flow computation. We extend the FCFD scheme to handle exceptional configurations (i.e. three- or five-cell connections as opposed to the regular four), which result from employing multiblock gridding of certain complex objects. In order to perform flow simulation efficiently, we employ a two-level preconditioner for solving the linear equations that results from the wide stencil of the FCFD scheme. The individual block, composed of cells that form a structured grid, serves as the local level; the higher level operates on the global block configuration (i.e. unstructured component). The implementation uses an efficient data structure where each block is wrapped with a layer of neighboring cells. We also examine splitting techniques [14] for the linear systems associated with the wide stencils of our FCFD operator. We present three numerical examples that demonstrate the method: (1) a pinchout, (2) a faulted reservoir model with internal surfaces and (3) a real reservoir model with multiple faults and internal surfaces.  相似文献   

10.
This paper extends the multipoint flux-approximation (MPFA) control-volume method to quadrilateral grids for which the adjacent cells do not necessarily share corners. Examples are grids with faults and locally refined grids. This paper gives a derivation of the method for such grids. The difference between two-point flux-approximation (TPFA) results and MPFA results for faults and local grid refinements is demonstrated for synthetic problems. Further, the results are compared with results from uniform fine-grid simulations. The effect of repeated fault patterns as well as anisotropy is investigated. Large errors may be found for the TPFA method for flow through a series of faults in an anisotropic medium. Finally, a comparison is done for a reservoir field application.  相似文献   

11.
Accurate geological modelling of features such as faults, fractures or erosion requires grids that are flexible with respect to geometry. Such grids generally contain polyhedral cells and complex grid-cell connectivities. The grid representation for polyhedral grids in turn affects the efficient implementation of numerical methods for subsurface flow simulations. It is well known that conventional two-point flux-approximation methods are only consistent for K-orthogonal grids and will, therefore, not converge in the general case. In recent years, there has been significant research into consistent and convergent methods, including mixed, multipoint and mimetic discretisation methods. Likewise, the so-called multiscale methods based upon hierarchically coarsened grids have received a lot of attention. The paper does not propose novel mathematical methods but instead presents an open-source Matlab? toolkit that can be used as an efficient test platform for (new) discretisation and solution methods in reservoir simulation. The aim of the toolkit is to support reproducible research and simplify the development, verification and validation and testing and comparison of new discretisation and solution methods on general unstructured grids, including in particular corner point and 2.5D PEBI grids. The toolkit consists of a set of data structures and routines for creating, manipulating and visualising petrophysical data, fluid models and (unstructured) grids, including support for industry standard input formats, as well as routines for computing single and multiphase (incompressible) flow. We review key features of the toolkit and discuss a generic mimetic formulation that includes many known discretisation methods, including both the standard two-point method as well as consistent and convergent multipoint and mimetic methods. Apart from the core routines and data structures, the toolkit contains add-on modules that implement more advanced solvers and functionality. Herein, we show examples of multiscale methods and adjoint methods for use in optimisation of rates and placement of wells.  相似文献   

12.
溃坝水流数值计算的非结构有限体积模型   总被引:2,自引:0,他引:2       下载免费PDF全文
针对溃坝洪水数值计算面临不规则边界和复杂地形等问题,建立了三角形网格下求解二维浅水方程的高精度Godunov型有限体积模型.空间上,引入变量重构和限制器技术,采用HLLC近似Riemann算子计算数值通量;时间上,采用Hancock预测-校正法.将底高程定义于单元顶点,结合单元水位~体积关系,提高了干湿界面处理能力.采...  相似文献   

13.
We give here a comparative study on the mathematical analysis of two (classes of) discretization schemes for the computation of approximate solutions to incompressible two-phase flow problems in homogeneous porous media. The first scheme is the well-known finite volume scheme with a two-point flux approximation, classically used in industry. The second class contains the so-called approximate gradient schemes, which include finite elements with mass lumping, mixed finite elements, and mimetic finite differences. Both (classes of) schemes are nonconforming and can be expressed using discrete function and gradient reconstructions within a variational formulation. Each class has its specific advantages and drawbacks: monotony properties are natural with the two-point finite volume scheme, but meshes are restricted due to consistency issues; on the contrary, gradient schemes can be used on general meshes, but monotony properties are difficult to obtain.  相似文献   

14.
围绕油藏数值模拟过程中三维地质模型的建模技术进行了分析与探讨,详细介绍了基于角点网格模型的建模方法,给出了相应的实现步骤。其主要流程是:首先根据断层数据构造断层模型,在断层模型的基础上构建骨架模型;然后在骨架模型约束下采用地层恢复技术实现含断层的地层模型;最后基于结构模型插值物性参数完成属性模型。以塔河油田缝洞型油藏为例,对建模流程和技术的可行性进行验证,结果表明,其建模结果与专业地质建模软件Petrel相符。  相似文献   

15.
Unsaturated flow problems in porous media often described by Richards’ equation are of great importance in many engineering applications. In this contribution, we propose a new numerical flow approach based on isogeometric analysis (IGA) for modeling the unsaturated flow problems. The non-uniform rational B-spline (NURBS) basis is utilized for spatial discretization whereas the stable implicit backward Euler method for time discretization. The nonlinear Richards’ equation is iteratively solved with the aid of the Newton–Raphson scheme. Owing to some desirable features of an efficient numerical flow approach, major advantages of the present formulation involve: (a) numerical oscillation at the wetting front can be avoided or facilitated, simply by using either an h-refinement or a lumped mass matrix technique; (b) higher-order exactness can be obtained due to the nature of the IGA features; (c) the approach is straightforward to implement and it does not need any transformation, e.g., Kirchhoff transformation or filter algorithm; and (d) in contrast to the Picard iteration scheme, which forms linear convergences, the proposed approach can however yield quadratic convergences by using the Newton–Raphson method for solving resultant nonlinear equations. Numerical model validation is analyzed by solving a three-dimensional unsaturated flow problem in soil, and its derived results are verified against analytical solutions. Numerical applications are then studied by considering three extensive examples with simple and complex configurations to further show the accuracy and applicability of the present IGA.  相似文献   

16.
To improve the stability and efficiency of explicit technique, one proposed method is to use an unconditionally stable alternating direction explicit (ADE) scheme. However, the standard ADE scheme is only moderately accurate and restricted to uniform grids. This paper derives a novel high‐order ADE scheme capable of solving the fluid diffusion equation in non‐uniform grids. The new scheme is derived by performing a fourth‐order finite difference approximation to the spatial derivatives of the diffusion equation in non‐uniform grid. The implicit Crank‐Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new high‐order ADE scheme. Because the new scheme can be potentially applied in coupled hydro‐mechanical (H‐M) simulation, the pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer program Fast Lagrangian Analysis of Continua. This coupling procedure is called the sequentially explicit coupling technique based on the fourth‐order ADE scheme (SEA‐4). Verifications of well‐known consolidation problems showed that the new ADE scheme and SEA‐4 can reduce computer runtime by 46% to 75% to that of Fast Lagrangian Analysis of Continua's basic scheme. At the same time, the techniques still maintained average percentage error of 1.6% to 3.5% for pore pressure and 0.2% to 1.5% for displacement solutions and were still accurate under typical grid non‐uniformities. This result suggests that the new high‐order ADE scheme can provide an efficient explicit technique for solving the flow equation of a coupled H‐M problem, which will be beneficial for large‐scale and long‐term H‐M problems in geoengineering.  相似文献   

17.
A sequential solution procedure is used to simulate compositional two-phase flow in porous media. We employ a multiphysics concept that adapts the numerical complexity locally according to the underlying processes to increase efficiency. The framework is supplemented by a local refinement of the simulation grid. To calculate the fluxes on such grids, we employ a combination of the standard two-point flux approximation and a multipoint flux approximation where the grid is refined. This is then used to simulate a large-scale example related to underground CO2 storage.  相似文献   

18.
A new parallel solution technique is developed for the fully implicit three‐dimensional two‐phase flow model. An expandedcell‐centered finite difference scheme which allows for a full permeability tensor is employed for the spatial discretization, and backwardEuler is used for the time discretization. The discrete systems are solved using a novel inexact Newton method that reuses the Krylov information generated by the GMRES linear iterative solver. Fast nonlinear convergence can be achieved by composing inexact Newton steps with quasi‐Newton steps restricted to the underlying Krylov subspace. Furthermore, robustness and efficiency are achieved with a line‐search backtracking globalization strategy for the nonlinear systems and a preconditioner for each coupled linear system to be solved. This inexact Newton method also makes use of forcing terms suggested by Eisenstat and Walker which prevent oversolving of the Jacobian systems. The preconditioner is a new two‐stage method which involves a decoupling strategy plus the separate solutions of both nonwetting‐phase pressure and saturation equations. Numerical results show that these nonlinear and linear solvers are very effective.  相似文献   

19.
Control-volume formulations for elliptic equations often use two-point flux stencils, even for skew grids. Any two-point flux stencil may be interpreted as a multipoint flux stencil. This yields a definition of the permeability (or conductivity) tensor. Formulas for calculating the permeability tensor, based on the user-specified quantities in the two-point flux stencil, are given. Numerical test examples demonstrate the validity of the derivation.   相似文献   

20.
The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号