首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relatively slow flow and exchange of Carr Inlet water with the main basin of Puget Sound, Washington, favor eutrophication. To study Carr Inlet’s circulation, the Model-measurement Integration Experiment in Estuary Dynamics (MIXED) was conducted in March–May 2003, spanning the spring bloom. From observations and numerical simulations the circulation was decomposed into tidal and subtidal components; the former was dominated by the M2 tide, the latter by atmospheric forcing. Near the surface, the subtidal velocity was correlated with wind. At mid depths, the subtidal velocity was organized into vertical bands arising from internal waves excited by wind forcing of the water surface. The tidal flow was more strongly steered by local bathymetry and weaker in peak magnitudes than the subtidal flow, yet it contributed more mechanical energy to the inlet. Tidal eddies reduce exchange of water through the inlet’s entrances. Numerical simulations with the Princeton Ocean Model recreated many observed features, including the three-layer vertical structure of outflow at the surface and bottom and inflow at mid depth, the mid-depth subtidal response to the wind, and characteristics of the tide. While the model produced greater subtidal flow magnitudes at depth and differences in the phase of the M2 tide compared to observations, overall the case study provided support for more comprehensive simulations of Puget Sound in the future.  相似文献   

2.
The wavelength of stationary water‐surface waves and their associated antidune bedforms are related to the mean velocity and depth of formative flow. In past published sand‐bed flume experiments, it was found that lens structures were preserved during antidune growth and change, and the dimension of the lenses was empirically related to antidune wavelength, and thus could be used to estimate flow velocity and depth. This study is the first to compare observations of formative flow conditions and resulting sedimentary structures in a natural setting, testing the previously published relationship at a field‐scale. Trains of stationary and upstream migrating water‐surface waves were prevalent during the flash flood in October 2012 in the Belham Valley, Montserrat, West Indies. Wave positions and wavelengths were assessed at 900 sec intervals through the daylight hours of the event within a monitored reach. The wave data indicate flow depths up to 1·3 m and velocity up to 3·6 m sec?1. Sedimentary structures formed by antidune growth and change were preserved in the event deposit. These structures include lenses of clast‐supported gravel and massive sand, with varying internal architecture. The lenses and associated low‐angle strata are comparable to sand‐bed structures formed from stationary and upstream migrating waves in flume experiments, confirming the diagnostic value of these structures. Using mean lens length in the event deposit underestimated peak flow conditions during the flood and implied that the lenses were preserved during waning flow.  相似文献   

3.
Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re?>?32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.  相似文献   

4.
The water column flow velocity of 36 river sections in the river reach between Hankou (Wuhan) and Wuxue of the middle-lower Changjiang River. Their cross sectional distribution patterns in relation to the river channel morphologies were examined by using ship-mounted ADCP (Acoustic Doppler Current Profiler) instrument. The results indicate four (I-VI) types of river channel morphology associated flow patterns: I—laterally deepening riverbed topographic pattern; II—symmetrical to asymmetrical riverbed topographic pattern; III—relative flat riverbed topographic pattern, and IV—sandbar supported riverbed topographic pattern. All these correspond to the different patterns of flow velocity distribution. The maximum flow velocity is usually related to the deeper water depth, but irregular water column distribution of flow current velocity results often from the vortices’ current associated with river knots. Deeper river water depth is usually identified in the river reach located slightly downstream to the river knot, where faster flow velocity occurs. Downward change in flow velocity fits semi-log law, showing an exponential decreasing flow current with the maximum flow velocity near the water surface. However, in the river reach near the river knots, the water column distribution of flow current velocity does not fit the semi-log law, showing the irregular flow current pattern. This study, in context of river catchment management, highlights the controls of riverbed morphology to the flow current structure, which will shed light on the post study of Three Gorges damming in 2009.  相似文献   

5.
Kinetic energy exchange equations (Saltzman 1957) in wave number domain are partitioned into standing, transient and standing-transient components following Murakami (1978, 1981). These components are computed for the 1991 summer monsoon using dailyu andv grid point data at 2.5° latitude-longitude interval between the equator and 40°N at 200 hPa and 850 hPa levels for the period June through August. The data are obtained from NCMRWF, New Delhi. The study shows that at 200 hPa wave number 1 over Region 3 (30°N to 40°N), wave number 2 over Region 2 (15°N to 30°N) and wave number 3 over Region 1 (equator to 15°N) dominate the spectrum of transport of momentum and wave to zonal mean flow interaction. Wave number 1 over Region 1 and Region 3 and wave number 2 over Region 2 are the major sources of kinetic energy to other waves via wave-to-wave interaction. At 850 hPa wave number 1 over Region 3 has maximum contribution in the spectrum of transport of momentum and kinetic energy and more than 90% of its contribution is from the standing component. This indicates that standing wave number 1 over Region 3 plays a very important role in the dynamics of monsoon circulation of the lower troposphere. The study further shows that although the circulation patterns at 200 hPa and 850 hPa levels are opposite in character, a number of energy processes exhibit a similar character at these levels. For example, (i) transport of momentum by most of the waves is northward, (ii) small scale eddies intensify northward, (iii) eddies are sources of kinetic energy to zonal mean flow over Region 1 and (iv) standing eddies are sources of kinetic energy to transient eddies. Besides the above similarities some contrasting energy processes are also observed. Over Region 2 and Region 3 standing and transient eddies are sources of kinetic energy to zonal mean flow at 200 hPa, while at 850 hPa the direction of exchange of kinetic energy is opposite i.e. zonal mean flow is a source of kinetic energy to standing as well as transient eddies. L(n) interaction indicates that at 200 hPa waves over R2 maintain waves over R1, while at 850 hPa waves over R1 maintain waves over R2. It has been found that the north-south gradient of zonal mean of zonal wind is the deciding factor of wave to zonal mean flow interaction.  相似文献   

6.
Flume experiments with medium sand confirm the increasing complexity in the shape of small-scale current ripples with increasing flow velocity for constant depth. Experiments suggest that a measure of ripple shape (the ratio of wavelengths of transverse to streamwise features, λ-x/λ-z) has a more complex relationship with the flow property (Fr, H?/d?) (where Fr is Froude Number of the flow and H?/d? is relative roughness), than was previously realized. It is suggested that hydraulic properties of the flow at the sediment water interface have a more general relationship with ripple form than do properties of the whole flow such as Froude and Reynolds Numbers. Properties of the whole flow tend to separate data into depthrelated curves at shallow flows where the free water surface influences the structure of the turbulence.  相似文献   

7.
Previous research suggests that the turbulence-driven suspension process in sand-bed channels is dominated by intermittent, energetic eddies with length scales of the order of channel depth. Because of the scarcity of data on the turbulent suspension process in alluvial channels, the possible variability in suspension intermittency and turbulent frequency content due to contrasts in flow depth, velocity or bedforms remains unclear however. The present study analyses eddy correlation suspension signals from seven deployments in varied flow conditions around a sandy meander bend. Deployment depths at near-bankfull flow stages varied from 2 to 5.5 m, velocities at 0.75–1 m height from 0.6 to 0.9 m s?1 and local mean suspended sand concentrations ranged from 30 to 150 mg L?1 in the intermittence and spectral content of sand suspension between the various deployments are analysed and results are compared with previously published findings. Study data suggest that the dominant eddy sizes involved in sediment mixing across the sensor level are consistently of the order of 1–5 times flow depth and lie within the ‘energy-bearing’ turbulent range. When sand suspension is analysed in the time domain in the various deployments, energetic, burst-like suspension events occupying only 1-5% of the record duration account for 20-90% of the suspension work. The degree of intermittence in the suspension process was observed to increase in deeper flows, where mixing events contributing extreme vertical sediment fluxes appear to be relatively more frequent.  相似文献   

8.
Podiform chromite ore deposits in ultramafic parts of ophiolite rock complexes can be detected using remote sensing data. This study focuses on the discrimination of chromite bearing mineralized zones using Landsat TM and Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data in Abdasht ophiolite complex, south of Iran. Several image processing methods, including Log residual, Decorellation Stretch, Band ratio and Mixture-Tuned Matched-Filtering (MTMF) have been evaluated for lithological mapping using Landsat ETM and ASTER data. The outcome showed that TIR band ratios of ASTER can discriminate quartzite, carbonate and mafic–ultramafic rocks in the ophiolite complex. Log residual, Decorollation Stretch and MTMF methods were more capable than previous published ASTER methods specifically for lithological mapping at a regional scale. New geological map of Abdasht region was produced based on the interpretation of ASTER image processing results and field verification. Consequently, the proposed methods demonstrated the ability of ASTER and Landsat ETM data to provide information for detecting chromite host rock (serpentinized dunites) that is valuable for chromite prospecting in study area. Additionally, the techniques used in this study are subtle for exploration geologist and mine engineering to identify high-potential chromite-bearing zones in the ophiolite complex, minimizing costly and time-consuming field works.  相似文献   

9.
This research developed an approach to enable the discrimination of lithological units and detection of host rock of chromitite bodies within ophiolitic complexes using the advanced spaceborne thermal emission and reflection radiometer (ASTER) and Landsat thematic mapper (TM) satellite data. Three main ophiolite complexes located in southern Iran were selected for the study. A specialized band ratio (4/1, 4/5, 4/7) of ASTER, minimum noise fraction (MNF) components and spectral angle mapper (SAM) on ASTER and Landsat TM data were used to distinguish ophiolitic rock units. Results show that the specialized band ratio was able to identify different rock units and serpentinized dunite as host rock of chromitites within ophiolitic complexes. Minimum noise fraction components of ASTER and Landsat TM data are suitable for distinguishing ophiolitic rock complexes at a regional scale. The integration of SAM and feature level fusion used in this investigation discriminated the ophiolitic rock units and provided geological map for the study area, including identification of high potential areas (serpentinite dunite) for chromite exploration targets.  相似文献   

10.
为进一步研究南海北部陆坡海洋动力过程对深海海底边界层的影响,研发了“深海海底边界层原位观测系统(In-situ Observation System for Bottom Boundary Layer in Abyssal Sea)”,ABBLOS。观测系统主体为坐底式深海运载平台,最大工作水深可达6 700 m(实际工作水深取决于搭载设备的耐压水深),是研究深海海底边界层问题的重要技术创新。观测平台由上下两部分框架结构组成,上部框架用于搭载和回收观测设备,下部支撑架为配重,并且用于提供距离海底1 m的观测空间;同时创新性地设计了“卡槽定位-螺栓紧固”的连接方式连接上下两部分,连接方式简单可靠,保证了平台回收成功率。ABBLOS集成了75 k-ADCP、高频ADCP、ADV、高精度压力计、海底摄像机等设备,以及甲烷、温盐深、浊度、溶解氧、氧化还原电位等传感器,首次实现了内波、中尺度涡等海洋动力过程与海底边界层物理化学参数的动态变化同步观测,特别是可以观测距离海底1 m高度范围的水体流速剖面,并且达到7 mm一层的垂向空间分辨率。研制完成后,2020年在南海北部陆坡神狐海域655 m和1 405 m水深处分别成功布放并回收,观测时间共计34天,采集到观测站位上覆海水的流速剖面结构,捕捉到了平均周期为1天1次的内波作用过程,以及海底边界层的多种物理化学参数。初步分析655 m水深处的观测数据后,发现深海海底边界层的温度、压力、溶解氧、密度和盐度等参数受控于海洋潮汐过程,尤其是温度和压力的变化基本与潮汐周期同步。海底边界层氧化环境较为稳定,甲烷浓度由高变低,但是基本在海洋溶解甲烷平均浓度范围内。与潮汐相比,内孤立波对深海海底边界层水体的影响程度较小,但是明显可以引起沉积物的再悬浮,引起的海底边界层的海水浊度从背景值的0.01 NTU增大到48 NTU,海底摄像机也记录到了内孤立波期间深海底层海水突然变浑浊的过程,说明南海内孤立波可以影响海底沉积物的输运。  相似文献   

11.
在利用遥感技术找矿中,矿化蚀变信息识别与提取起着重要作用。选择具有典型蚀变特征的安徽铜陵凤凰山矿田作为研究区,从分析地物波谱,尤其是岩矿光谱特征出发,根据ETM+和ASTER数据的光谱特征,采用主成分分析(PCA),设计了相应的粘土矿化蚀变信息提取方案,成功地进行信息提取。对两者的提取结果进行比较后表明,ASTER数据较之ETM数据在粘土类矿化蚀变信息提取中具有更大的优势。  相似文献   

12.
喀喇昆仑山西北部冰川运动速度地形控制特征   总被引:2,自引:2,他引:0  
为了探讨地形和海拔对冰川季节和年平均运动速度的影响程度,利用2013-2018年GoLive数据与ASTER GDEM V2数据对喀喇昆仑山西北部3 389条冰川的地形(坡度、坡向、海拔)和冰川运动速度进行了综合分析。结果表明:冰川表面运动速度在物质平衡线处(3 970~4 770 m)达到最快,是冰川积极维持物质平衡的一种体现。坡度平缓地区在不同海拔下的冰川运动速度有明显的差别,但是不同坡度地区的冰川运动速度随海拔变化的趋势基本一致,均呈现先增大后减小。北坡冰川运动速度较平稳,南坡和西南坡的冰川运动速度(均为0.25 m·d-1)最快并且变化幅度较大,最小值与最大值相差近4倍。冰川运动速度不是呈现单一的季节性变化,同时还会受到地形的控制。低海拔区域冰川运动速度在消融期(3-6月)较快,中海拔区域在消融前(11月至次年2月)较快。  相似文献   

13.
山西某勘探区地形较平坦,相对高差较小,地表多为第四系黄土覆盖,零星有基岩出露,岩石风化严重,无潜水位.激发条件较复杂。该区主要可采3^#煤层埋藏最浅为75m,最深处245m,层位沉积不稳定.厚度变化剧烈;15^#煤层上距3^#煤层90m±,沉积相对稳定。该区二煤层形成的反射波T3和T15波虽可辨认,但因煤层埋深较浅.易受浅层干扰,有效叠加次数减少。通过实验,确定了激发及接收参数;在资料处理上利用叠前及叠后反褶积以提高分辨率:在解释中,充分利用水平切片、层拉平切片等方法,结合相干体、方差体技术进行相关特征对比及验证,有效识别出勘探区内的断层、陷落柱、采空区、无煤及薄煤区,为煤矿生产提供了可靠的地质保障。  相似文献   

14.
煤层工作面内陷落柱与煤层之间具有显著的电阻率、波速和密度差异,适宜于采用无线电波透视法和震波透视CT法来探测煤层工作面内陷落柱的边界范围;陷落柱体通常裂隙发育,与围岩相比较,其富水陷落柱为相对低电阻率值范围,而不富水陷落柱则为相对高电阻率值范围,因此,可利用煤层底板三维电法来探查底板陷落柱富水性。谢桥矿13218工作面1^#陷落柱的探测表明,该陷落柱范围具有较高的电磁波吸收系数特征和相对较高的纵波波速特征;工作面底板陷落柱向下范围为相对高电阻率值特征,为不富水陷落柱。该综合物探探测结果与实际验证资料基本吻合,有效地指导了本煤层工作面开采及底板煤层工作面的开采设计与施工。  相似文献   

15.
The heterogeneous upper mantle low velocity zone   总被引:2,自引:1,他引:2  
The upper mantle low velocity zone (LVZ) is a depth interval with slightly reduced seismic velocity compared to the surrounding depth intervals. The zone is present below a relatively constant depth of 100 km in most continental parts of the world, both in cratonic areas with high average velocity and tectonically active areas with low average velocity. Evidence for the low velocity zone arises from controlled and natural source seismology, including studies of surface waves and of primary and multiple reflections of body waves from the bounding interfaces, calculations of receiver functions, and absolute velocity tomography. The available data indicates a more pronounced reduction in seismic velocity and Q-value for S-waves than P-waves as well as high electrical conductivity in the LVZ. Seismic waves are strongly scattered by the zone, which demonstrates the existence of small-scale heterogeneity. The depth to the base of the LVZ is systematically shallower in cold, stable cratonic areas than in hot, active regions of the world. Because of its global occurrence below a relative constant depth of 100 km, the LVZ cannot be explained by metamorphic or compositional variation and rheological changes. Calculated upper mantle temperatures indicate that the rocks are close to the solidus in an interval with variable thickness below 100 km depth, provided that the rocks contain water and carbon dioxide. The presence of, even small amounts of such fluids in the mantle rocks will lower the solidus by several hundred degrees and introduce a characteristic kink on the solidus curve around 80–100 km depth. The seismic velocities and Q-values are significantly reduced of rocks, which are close to the solidus or contain small amounts of partial melt. Hence, the LVZ may be explained by upper mantle temperatures being close to the solidus in a depth interval below 100 km. Assuming that the rocks contain only limited amounts of fluids, this mechanism may explain the low velocities, Q-values, and resistivity, as well as the intrinsic scattering, and the characteristic variation in thickness of the low velocity zone.  相似文献   

16.
Recent laboratory investigations have shown that rotation and (streamwise) curvature can have spectacular effects on momentum transport in turbulent shear flows. A simple model that takes account of these effects (based on an analogy with buoyant flows) utilises counterparts of the Richardson number Rg and the Monin-Oboukhov length. Estimates of Rg for meanders in ocean currents like the Gulf Stream show it to be of order 1 or more, while laboratory investigations reveal strong effects even at |Rg|~0·1. These considerations lead to the conclusion that at a cyclonic bend in the Gulf Stream, a highly unstable flow in the outer half of the jet rides over a highly stable flow in the inner half. It is conjectured that the discrepancies noticed between observation and the various theories of Gulf Stream meanders, and such phenomena as the observed detachment of eddies from the Gulf Stream, may be due to the effects of curvature and rotation on turbulent transport.  相似文献   

17.
为模拟淹没丁坝群平面二维水流运动,提出了淹没丁坝群二维水流数值模拟新方法并建立了数学模型。新方法的主要实施方案:① 将丁坝视为无厚度坝,用网格线概化丁坝;② 采用新的网格节点布置形式,即水深、流速节点布置于网格界面上,水位节点布置于网格中心,有别于一般交错网格节点布置。模型采用基于结构网格下的有限体积法对方程组进行离散,同时将淹没丁坝坝顶水深代入离散方程中进行求解。采用已有的水槽试验资料,进行了初步验证,模拟了长江下游东流水道已建丁坝群工程实施后河道的流场和水位场,结果表明计算和实测符合较好。  相似文献   

18.
A new method of digital optical anemometry (Particle Image Velocimetry, PIV) of turbulent flows is suggested and implemented in the laboratory; it is based on the use of continuous laser radiation and high-speed video photography, providing continuous statistical ensembles of flow velocity fields. Application of the method to the study of wind field over waves has allowed us to perform, for the first time, direct measurements of velocity fields, averaged over turbulent pulsations induced by waves in the air flow. The experiments demonstrated that the velocity fields, averaged over the turbulent pulsations, are nonseparated even in the case of steep and breaking waves, when separation of the flow from the wave crests in the instantaneous fields is observed. Based on comparison with the experimental data, it is shown that the average wind fields over waves are described well quantitatively in the framework of semiempirical closure models of turbulence.  相似文献   

19.
柴波  陶阳阳  杜娟  黄平  王伟 《地球科学》2020,45(12):4630-4639
冰湖溃决型泥石流是高原山区特殊的地质灾害,以西藏聂拉木县嘉龙湖为例,建立了一套冰湖溃决型泥石流危险性评价方法.以喜马拉雅山区1970—2015年气温波动频次和聂拉木冰湖溃决历史事件预测了未来10年嘉龙湖溃决的时间概率.利用遥感影像识别嘉龙湖上方不稳定冰体的范围和规模,采用美国土木工程师协会推荐公式和修正的三峡库区涌浪计算方法分析了冰川滑坡产生的涌浪规模,从涌浪波压力和越顶水流推力两方面预测了冰碛坝发生失稳的可能性.采用FLO-2D模拟冰湖溃决泥石流的运动过程,以最大流速和泥深表达了嘉龙湖溃决泥石流的危险程度.评价结果表明:2002年嘉龙湖溃决事件与当年气温偏高有关,未来嘉龙湖发生溃决概率高;冰川滑坡激起涌浪能够翻越坝顶,并引起坝体快速侵蚀而溃决;冰湖溃决泥石流对聂拉木县城河道两侧54栋建筑造成威胁.评价方法实现了冰湖溃决型泥石流危险性的定量分析,评价结果对聂拉木县城泥石流防灾具有现实意义.   相似文献   

20.
为了研究陷落柱影响区域内巷道渗流突水机制及其主控因素,采用Darcy、Brinkman、N-S方程对含水层、陷落柱、突水巷道内流场进行联动系统刻画,选取不同参数、不同边界等变量,分析影响陷落柱渗流突水强度的主要因素。结果表明:定压、定流量条件下,含水层渗透率增大会引起含水层和陷落柱交界处区域流速增大,但定流量条件下增幅较小,且会降低巷道突水流速;陷落柱渗透率的增大对突水压力和突水流速作用显著,定压条件下,随着陷落柱渗透率的增大,巷道突水流速骤增;含水层压力增高,陷落柱区域和巷道区域流速明显增大;在定流量边界下,随着陷落柱渗透率的增大,巷道突水流速仅发生微小波动;将研究结论与现有相关成果进行了对比验证分析,获得了与本文较一致的研究规律。总体分析,陷落柱影响区域巷道突水机理是含水层水压高、足量补水、陷落柱破碎区域渗透率较大且联通了含水层和巷道;其中,含水层压力、陷落柱渗透率是陷落柱渗流突水强度的主控因素。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号