首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climbing‐ripple cross‐lamination is most commonly deposited by turbidity currents when suspended load fallout and bedload transport occur contemporaneously. The angle of ripple climb reflects the ratio of suspended load fallout and bedload sedimentation rates, allowing for the calculation of the flow properties and durations of turbidity currents. Three areas exhibiting thick (>50 m) sections of deep‐water climbing‐ripple cross‐lamination deposits are the focus of this study: (i) the Miocene upper Mount Messenger Formation in the Taranaki Basin, New Zealand; (ii) the Permian Skoorsteenberg Formation in the Tanqua depocentre of the Karoo Basin, South Africa; and (iii) the lower Pleistocene Magnolia Field in the Titan Basin, Gulf of Mexico. Facies distributions and local contextual information indicate that climbing‐ripple cross‐lamination in each area was deposited in an ‘off‐axis’ setting where flows were expanding due to loss of confinement or a decrease in slope gradient. The resultant reduction in flow thickness, Reynolds number, shear stress and capacity promoted suspension fallout and thus climbing‐ripple cross‐lamination formation. Climbing‐ripple cross‐lamination in the New Zealand study area was deposited both outside of and within channels at an inferred break in slope, where flows were decelerating and expanding. In the South Africa study area, climbing‐ripple cross‐lamination was deposited due to a loss of flow confinement. In the Magnolia study area, an abrupt decrease in gradient near a basin sill caused flow deceleration and climbing‐ripple cross‐lamination deposition in off‐axis settings. Sedimentation rate and accumulation time were calculated for 44 climbing‐ripple cross‐lamination sedimentation units from the three areas using TDURE, a mathematical model developed by Baas et al. (2000) . For Tc divisions and Tbc beds averaging 26 cm and 37 cm thick, respectively, average climbing‐ripple cross‐lamination and whole bed sedimentation rates were 0·15 mm sec?1 and 0·26 mm sec?1 and average accumulation times were 27 min and 35 min, respectively. In some instances, distinct stratigraphic trends of sedimentation rate give insight into the evolution of the depositional environment. Climbing‐ripple cross‐lamination in the three study areas is developed in very fine‐grained to fine‐grained sand, suggesting a grain size dependence on turbidite climbing‐ripple cross‐lamination formation. Indeed, the calculated sedimentation rates correlate well with the rate of sedimentation due to hindered settling of very fine‐grained and fine‐grained sand–water suspensions at concentrations of up to 20% and 2·5%, respectively. For coarser grains, hindered settling rates at all concentrations are much too high to form climbing‐ripple cross‐lamination, resulting in the formation of massive/structureless S3 or Ta divisions.  相似文献   

2.
地下水年龄结构是了解一个地区地下水资源开采可持续性的重要基础。穆兴平原地下水开采量增加以及地下水环境恶化,对该地区可持续发展有一定制约,为此在2016年采集CFCs样品31组和3H样品60组,估算了研究区地下水年龄。结果表明,穆兴平原北部地下水年龄为21年到大于65年,由西北部和穆棱河向平原中部及乌苏里江逐渐变老,更新性变差,主要受到大气降水和地表河水补给,但是由于地表覆盖一层黏性土,地下水中缺失小于10年的水;不同井深样品中二者及NO_3~-浓度的变化,表明在60 m以上地下水的防污性能较差,而在100 m以下则较好,饮用水源井深需超过100 m。  相似文献   

3.
Measurements are described of the geometry of ripples formed on beds of sand exposed to a steady current at right angles to an oscillatory flow. Four different sands were studied. The oscillation was produced by an oscillating tray set into the bed of a steady-flow flume. It was observed that straight-crested ripples formed by oscillatory flow would usually develop a ‘serpentine’ form when the superimposed steady current exceeded a certain limit. For amplitudes of the tray velocity U less than about 0.38 m s-1 this limit corresponded to U/ū*c>31, where ū*c is the shear velocity measured just upstream of the oscillating tray. It is suggested that the serpentine form is caused by the interaction of vortices carried back and forth between adjacent ripples. On this assumption, the wavelength of the serpentine form would be proportional to the product of period of oscillation and near-bed steady current velocity. The present measurements appear to support this hypothesis although there is also evidence that the wavelength is influenced by preferred spacing patterns between vortices. The measurements also show the ratio of the amplitude of the serpentine form to its wavelength to be approximately constant. Empirical relationships are derived relating ripple geometry to flow and sediment properties. It is observed that the influence of Reynolds number and sediment properties on the geometry is very weak. It is suggested that this is typical of ripples formed with relatively low sediment transport rates. It is also found that, under the present experimental conditions, the ripple spacing in the direction of oscillation is almost independent of the magnitude of the steady current and in close agreement with the wavelengths previously measured in an oscillating water tunnel. This suggests that the additional inertia effects associated with oscillating tray rigs were not sufficient to affect bed geometry under the present test conditions.  相似文献   

4.
在数值计算成果的基础上,对阻力圆盘浮力射流的流场进行了分析和总结,基于轴线流速的变化规律将盘后流场分为3个区域:回流区、过渡区和自相似区.得到了回流区的长度随弗劳德数F0、孔口直径D/d以及盘离孔口的距离H/d的变化规律,并得到了工况为H/D=1,D/d=2,6和H/D=3,D/d=2在不同弗劳德数F0条件下的横截面上的流速分布和达到自相似区的最小长度;结果表明弗劳德数F0的大小是决定绕流流态的主要因素;同时分析了由正常绕流发展到非正常绕流的压力场变化,发现由于弗劳德数F0的增大而导致流场中出现的第三个负压中心的大小和位置与绕流是否能正常发生存在密切的关系.  相似文献   

5.
在数值计算成果的基础上,对阻力圆盘浮力射流的流场进行了分析和总结,基于轴线流速的变化规律将盘后流场分为3个区域:回流区、过渡区和自相似区。得到了回流区的长度随弗劳德数F0、孔口直径D/d以及盘离孔口的距离H/d的变化规律,并得到了工况为H/D=1,D/d=2,6和H/D=3,D/d=2在不同弗劳德数F0条件下的横截面上的流速分布和达到自相似区的最小长度;结果表明弗劳德数F0的大小是决定绕流流态的主要因素;同时分析了由正常绕流发展到非正常绕流的压力场变化,发现由于弗劳德数F0的增大而导致流场中出现的第三个负压中心的大小和位置与绕流是否能正常发生存在密切的关系。  相似文献   

6.
样品测试是研究岩溶区水工环问题的重要手段。岩溶区交通不便利、样品运输困难以及测试单位处理样品不及时,导致样品测试存在不同程度的滞后,现有研究还不能有效解释"测试滞后"对岩溶水样性质有何影响。为此,本文以云南宣威市一典型岩溶泉水为研究对象,通过离子色谱仪、原子发射光谱仪等测试手段,对同一时间点采集的泉水样品按照时间序列对K+、Na+、Ca2+、Mg2+、Cl-、SO2-4、HCO-3、pH、NO-3、CO2(fs)共10项指标进行对比实验,探讨"测试滞后"对岩溶水样性质的影响。结果表明:岩溶水样放置过程中,各指标A类标准不确定度为0. 02~1. 83,HCO-3、Ca2+不确定度值显著高于其他指标; Shapiro-Wilk正态性检验结果显示pH、K+、Mg2+、Cl-、NO-3服从正态分布;随着时间变化,各指标相对偏差变化范围0%~57. 38%,其中pH、Ca2+、SO2-4、NO-3的相对偏差在允许误差范围之内; 10项指标均值含量与变异系数总体呈显著负相关性(Spearman相关系数为-0. 709,P 0. 05),变异系数为Na+ K+ CO2(fs) Mg2+ Cl-SO2-4 Ca2+ HCO-3 p H NO-3,揭示测试滞后对不同指标的影响程度不同,其中对质量分数低的指标影响尤为突出。在整个实验期间内,水样水质变化可分为5个阶段:以各项指标未出现明显变化的初期稳定阶段(0~3d),以Na+、K+、Mg2+三项指标出现显著变化的初步变化阶段(3~5d),以多项指标发生较为显著变化的混合变化阶段(5~17d),以微生物作用为主的细菌潜在影响阶段(17~35d),以水质趋于稳定的相对平衡阶段(35~75d),其中"细菌作用"和"碳酸平衡作用"是岩溶水样放置过程中存在的两个重要作用机制。研究结果可为提高岩溶水样测试质量提供科学指导。  相似文献   

7.
余斌 《水科学进展》2008,19(1):27-35
潜入点的水流泥沙条件是异重流的发生条件和持续条件,受到了国内外学者的广泛关注。初期潜入点Fr代表异重流的发生条件,而稳定潜入点Fr则代表异重流的持续条件。通过一系列的低浓度浊流和高浓度浊流及泥石流的异重流潜入点的实验研究,分析对比低浓度浊流和高浓度浊流及泥石流的异重流的关系,得到在均匀顺直水槽中的异重流初期的潜入点Fr规律。提出在一定的水槽宽度、泥沙浓度条件下,异重流的初期潜入点Fr与头部流速成正比。与其它文献不同研究条件的实验结果对比有很好的一致性,说明该研究结论有很好的可靠性。该研究结论的适用范围为初期潜入点,不适用于稳定潜入点和初期潜入点与稳定潜入点之间的过渡阶段。但高浓度浊流和泥石流的异重流初期潜入点Fr与其稳定潜入点Fr很接近,粘性泥石流的异重流更接近。  相似文献   

8.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   

9.
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.  相似文献   

10.
The most common wave-generated structures in the nearshore lacustrine sediments of the south-east Shetland basin are cosets of undulatory and unidirectional ripple cross-lamination. The undulatory lamination was produced at relatively high oscillatory flow strengths by accretion of rolling grain (post-vortex) ripples, and the unidirectional cross-sets were formed by the migration of vortex (orbital) ripples at lower strengths. Unidirectional solitary lenses were generated under moderate but discontinuous wave activity on a partly sand-starved substrate. Some lenses were reworked during periods of more prolonged wave activity. The Inman-Komar plot of near-bottom orbital diameter versus ripple spacing (λ= 0.80d0 for small d0, or λ= 0.65d0 as modified by Miller & Komar) may only be used in estimating ancient wave conditions for vortex ripples with low Vertical Form Indices and small wavelengths. This laboratory based relationship (minimum d0 conditions) is utilized in this study since wave periods in lakes are small. The estimation of ancient wave conditions suggests that the ripples were produced in water depths of up to 10 m and in most cases less than 5 m. The formative waves possessed periods of up to 3.4 sec and suggest that the lake was relatively small, perhaps of the order of 20 km wide.  相似文献   

11.
不同坡度草地含沙水流水力学特性及其拦沙机理   总被引:17,自引:5,他引:17       下载免费PDF全文
参照黄土区侵蚀降雨和坡面片蚀产沙特征,采用恒流泥沙输送装置模拟坡面上方来水来沙,探讨不同坡度草地含沙水流的水力学特性及其对上方来沙的拦蓄机理。结果表明,草地坡面的水流弗劳德数随坡度增大而增加,而阻力系数与坡度呈反势。按明渠水流的一般标准,不同坡度草地水流均为层状缓流。草地坡面拦沙效应随坡度增大而减小,且径流前期的减沙作用较后期更为显著。不同坡度草地坡面的出流泥沙平均直径和大颗粒(>10μm)泥沙含量均显著小于上方来沙,这说明草地的拦沙效应主要体现在对大粒径泥沙的拦蓄上。  相似文献   

12.
Field research of wave generated bed forms within complex sediment size distributions near the inlet of a tidal lagoon at the northern coast of Brittany has stimulated an experimental study in a laboratory wave tank. Several sediment mixtures, most of them with bimodal grain size distributions, were exposed to different monochromatic shallow water waves. The observations and measurements included the dynamics of the water waves and the generation, shape, and size of oscillatory bed forms. The experiments confirm the known relationship between grain size and ripple size. In addition it is shown that coarse sand, added to a preexisting fine bed material leads to an increasing asymmetry of ripples. There is some suggestion that the variability of ripple heights is reduced by higher contents of coarse sand. Bimodal sediment size distributions obviously do not cause unusual geometry of ripples — at least within the range of the experimental tests. The different sand size modes move together in one phase, forming structures with more or less homogeniously distributed bed material. Differentiation of sediment sorting does of course occur, but this is in the range of the whole test section. Finally the experiments allowed to test the validity of some wave formulas. The own experiments are compared with some results from field and laboratory studies of other authors.  相似文献   

13.
在我国西部山区地震、地质活跃带,泥石流灾害对位于泥石流沟道、沟口等位置处的桥墩构成重大威胁。如何量化描述泥石流冲击桥墩的动力过程,是泥石流减灾领域拟要解决的一个重要科学问题。以泥石流灾害威胁成兰铁路沿线桥墩的工程背景为基础,依托大型泥石流模拟系统,进行多组室内大比例泥石流冲击桥墩物理模型试验。研究泥石流流速、流深以及流体特征参数与泥石流冲击压力的相关性。试验结果表明:冲击过程主要受到弗汝德数Fr和雷诺数Re两个无量纲数控制,稀性泥石流冲击压力主要控制参数为Fr,而对于黏性泥石流则同时有Fr和Re的影响;不论是对于峰值冲击力还是冲击功率谱,不同类型泥石流差别显著;在相同重度等条件下,稀性泥石流具有更大的冲击能量;此外,各种类型泥石流通过临界Fr线得到了本质上的区分。研究成果将为桥墩抗泥石流冲击结构设计提供技术支持及科学依据。  相似文献   

14.
针对低弗劳德数水流消能问题,在确定单级消力池和二级消力池体型的基础上,采用物理模型试验方法,分别研究了低弗劳德数水流单级和二级消力池的水力特性和消能结构特性。结果表明,在低弗劳德数水流条件下,二级消力池将原单级消力池出池水面较大波动区变成了适应区,对下游尾水位的适应区间显著增加,出池水面波动更小。同时,单级消力池内流线更加稀疏,流速梯度更小;消力池涡量大小明显低于二级消力池,而雷诺应力明显大于二级消力池;二级消力池内雷诺应力大小分区较单级消力池更明显,表面旋滚区明显大于底部旋滚区,水流更加稳定。相比单级消力池,二级消力池消能率显著提高,且有利于下游河床和岸边的防冲保护,工程应用更为有利。  相似文献   

15.
Most aqueous sedimentary environments contain varying concentrations of fine‐grained, often clay‐rich, sediment that is transported in suspension and may modify the properties of the flow and underlying mobile bed. This paper presents results from a series of laboratory experiments examining the mean and turbulent properties of clay‐laden (kaolinite) flows, of various volumetric sediment concentrations between 0·046% and 12·7%, moving over a fixed, idealized current ripple. As the kaolinite concentration was raised, with flow velocity and depth constant, four flow types were observed to occur: (i) turbulent flow, in which flow separation is dominant in the leeside of the ripple; (ii) turbulence‐enhanced transitional flow, in which turbulence in the leeside separation zone region is enhanced; (iii) turbulence‐attenuated transitional flow, in which turbulence along the separation zone shear layer and in the free flow above it becomes damped, eventually leading to a reduction in the size of the separation zone wake region; and (iv) laminar plug flow, in which turbulence is damped and flow is almost stagnant in the lee of the ripple. Such modulation of turbulence by increasing clay concentrations suggests that many paradigms of flow and bedform dynamics, which have been based on extensive past work in clear water flows, require revision. The present results highlight a need to fully characterize the boundary conditions for turbulence modulation as a function of clay type and applied flow conditions, and the effects of such flows on fully mobile cohesionless beds.  相似文献   

16.
The following dimensionless parameters (two of them well-known and five of them new) are defined for determination of ripple mark geometry: ripple index (RI), ripple symmetry index (RSI), continuity index (CI), bifurcation index (BI), straightness index (SI), and two different parallelism indices (PI1 and PI2). In general, RI = 15 or less indicates wave or water current origin; RI = 17 or more indicates wind or swash origin. RSI = 1.5 or less indicates wave or swash types; RSI = 3 or more indicates wind or water current types. CI = 15 or more suggests wind or wave origin; CI = 10 or less suggests water current origin. BI = 10 or more suggests wave varieties; BI = 1 or less suggests wind varieties. SI = 102 or more indicates wind or deep-water wave types; SI = 15 to 102 indicates wind or wave types; SI =4 or less indicates current types. PI1 = 7 or more suggests wave origin; PI1 = 1 or less suggests water current origin. PI2 = 0.4 or more is probably the result of swash or water current action. PI2 = 0.2 or less is probably the result of wind or wave action. Longitudinal ripple marks (such as rib-and-furrow) and deformed or modified varieties (such as flat-topped tidal-flat ripple marks and nearly- flat-topped intermittent creek ripple marks) have been excluded, inasmuch as (1)they are commonly easy to identify from their appearance, and (2)they are difficult to measure with ordinary methods. Plots of two indices against each other on coordinate paper can be particularly useful; the best combinations are RI vs. RSI, and RI vs. PI1, although several other pairs are almost as good. Where all seven parameters can be obtained, the confidence one can have in the interpretation is close to 98%. The effects of current bias, or depth bias, on wave-type ripple marks, extend to both the symmetry (RSI) and to sediment-transport interpretations. Unless the investigator is reasonably sure that no such bias is present (i.e., RSI = 1.0 instead of some significantly higher value such as 1.5), wave-type ripple marks cannot be used to determine direction of either wave approach or sediment transport. If no such bias is present, wave-type ripple marks still cannot be used to determine precise sediment transport direction. If RSI = 1.0 precisely, it is not even necessary that the ripple crests parallel the waves that formed them. The same restrictions apply to the interpretation of micro-crossbedding (that is, ripple mark internal structure). Despite these seemingly severe limitations, general geometry commonly permits a reliable interpretation, and hence ripple marks can provide a great deal of useful data for paleogeographic interpretations. The swash-zone variety of ripple marks includes two sub-types: those modified by a small but unmistakeable hydraulic jump, and those not so modified. The RI can be used to distinguish between these two, even when they were not observed to form.  相似文献   

17.
Dealing with kinetic energy is one of the most important problems in hydraulic structures, and this energy can damage downstream structures. This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction. The experiments were conducted on a sudden contraction with 15 cm width. A 30 cm wide flume was installed. The relative contraction ranged from 8.9 to 9.7, where relative contraction refers to the ratio of contraction width to initial flow depth. The Froude value in the investigation varied from 2 to 7. The contraction width of numerical simulation was 5~15 cm, the relative contraction was 8.9~12.42, and the Froude value ranged from 8.9~12.42. In order to simulate turbulence, the k-ε RNG model was harnessed. The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value. Also, with the sudden contraction, the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth. The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02.  相似文献   

18.
Experiments were conducted to determine the water solubility of alkali basalts from Etna, Stromboli and Vesuvius volcanoes, Italy. The basaltic melts were equilibrated at 1,200°C with pure water, under oxidized conditions, and at pressures ranging from 163 to 3,842 bars. Our results show that at pressures above 1 kbar, alkali basalts dissolve more water than typical mid-ocean ridge basalts (MORB). Combination of our data with those from previous studies allows the following simple empirical model for the water solubility of basalts of varying alkalinity and fO2 to be derived: \textH 2 \textO( \textwt% ) = \text H 2 \textO\textMORB ( \textwt% ) + ( 5.84 ×10 - 5 *\textP - 2.29 ×10 - 2 ) ×( \textNa2 \textO + \textK2 \textO )( \textwt% ) + 4.67 ×10 - 2 ×\Updelta \textNNO - 2.29 ×10 - 1 {\text{H}}_{ 2} {\text{O}}\left( {{\text{wt}}\% } \right) = {\text{ H}}_{ 2} {\text{O}}_{\text{MORB}} \left( {{\text{wt}}\% } \right) + \left( {5.84 \times 10^{ - 5} *{\text{P}} - 2.29 \times 10^{ - 2} } \right) \times \left( {{\text{Na}}_{2} {\text{O}} + {\text{K}}_{2} {\text{O}}} \right)\left( {{\text{wt}}\% } \right) + 4.67 \times 10^{ - 2} \times \Updelta {\text{NNO}} - 2.29 \times 10^{ - 1} where H2OMORB is the water solubility at the calculated P, using the model of Dixon et al. (1995). This equation reproduces the existing database on water solubilities in basaltic melts to within 5%. Interpretation of the speciation data in the context of the glass transition theory shows that water speciation in basalt melts is severely modified during quench. At magmatic temperatures, more than 90% of dissolved water forms hydroxyl groups at all water contents, whilst in natural or synthetic glasses, the amount of molecular water is much larger. A regular solution model with an explicit temperature dependence reproduces well-observed water species. Derivation of the partial molar volume of molecular water using standard thermodynamic considerations yields values close to previous findings if room temperature water species are used. When high temperature species proportions are used, a negative partial molar volume is obtained for molecular water. Calculation of the partial molar volume of total water using H2O solubility data on basaltic melts at pressures above 1 kbar yields a value of 19 cm3/mol in reasonable agreement with estimates obtained from density measurements.  相似文献   

19.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   

20.
This short note reports a series of density current experiments designed to model turbidity underflows caused by flood-stage discharge of lake-tributaries. In a 5.8 m long tank filled with freshwater, saltwater was fed in continuously, flowing down a 15°‘delta’ slope onto a horizontal floor. These density currents maintained steady state characteristics. The main objectives of this investigation were to determine (1) the flow regime of the density currents and (2) the underflow-induced movements in the freshwater. Reynolds numbers for thirty-five runs ranged from 70 to 4100. Experiments with laminar flow reproduced kinematic (Froudian) models of underflows measured in the Walensee (Switzerland). Flow was rapid on the slope (Froude number, Fr > 1) and tranquil (Fr<1) on the floor. Turbulent flow experiments yielded velocity profiles (with a maximum at the flow interface) which approximate natural conditions. Movements in formerly stagnant water body are induced by interfacial shear stress: a layer of freshwater is dragged along by the density current and replaced by the backward flow of an equal amount of overlying water (mass conservation). Extrapolated to a natural setting, circulation induced by underflows is probably an important mechanism for oxygenating deep lacustrine basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号