首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of a zonal slope in the thermocline on both wave- and wind-induced equatorial upwelling is studied. It is shown that the vertical displacement of the thermocline induced by a long Kelvin or planetary wave varies as the thermocline depth to the power ?38, as the wave propagates into a region of changed thermocline depth The zonal and meridional velocities induced by a wave vary as the thermocline depth to the power ?78. The wind-induced upwelling associated with a zonal slope of the thermocline is shown to be strongly confined to the equator. The importance of thermocline slope on the Ekman divergence is found to increase with time from the initial application of the wind stress perturbation. In the Pacific Ocean the meridional velocity may be altered by up to 60% by the thermocline slope before the influence of the boundaries becomes important.  相似文献   

2.
The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model.The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific.The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation.Equatorial upwelling dominates the heat budget in that region.Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model.After introducing the seasonal cycle of chlorophyll-a concentration,the peak of the power spectrum becomes broad,and longer periods(>3 years) are found.These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves,which are caused by the shallow mean thermocline in the northeastern Pacific.  相似文献   

3.
Scale analyses for long wave, zonal ultralong wave (with zonal scale of disturbance L1~104 km and meridional scale L2~103 km) and meridional ultralong wave (L1~103 km, L2~104 km) are carried out and a set of approximate equations suitable for the study of these waves in a dry tropical atmosphere is obtained. Under the condition of sheared basic current, frequency analyses for the equations are carried out. It is found that Rossby waves and gravity waves may be separated for n ≥ l where n is the meridional wave number, whereas for n = 0 and L1~1000 km, the mixed Rossby-gravity wave will appear. Hence it is confirmed that the above results of scale analyses are correct. The consistency be-tween frequency analysis and scale analysis is established.The effect of shear of basic current on the equatorial waves is to change their frequencies and phase velocities and hence their group velocities. It increases the velocity of westward travelling Rossby waves and inertia-gravity and mixed waves, but decelerates the eastward inertia-gravity waves and the Kelvin wave. The recently observed low-frequency equatorial ocean wave may be interpreted as an eastward Kelvin wave in a basic current with shear.  相似文献   

4.
赵强  刘式适 《大气科学》2001,25(1):133-141
利用多重尺度摄动法,从描写赤道Rossby波的正压大气位涡度方程中推导出在切变基本纬向流中非线性赤道Rossby波包演变所满足的非线性Schrodinger方程,并得到其单个包络孤立子波解,分析基本流切变对非线性赤道Rossby波动的影响。  相似文献   

5.
Summary This study investigates the impact of lateral boundary conditions on the propagation and dispersion of locally excited Rossby waves in a zonally periodic, barotropic, quasigeostrophic channel model on the β-plane. We use basic flows with either a linear meridional shear or a jet-like profile. On the southern boundary of the channel we impose either a rigid wall or a radiation condition, whereas the northern sidewall is permeable for Rossby waves. We compare the numerical solutions found for a reflecting southern boundary in a weakly dissipative flow to the solutions obtained from a WKB-analysis for the corresponding unforced nondissipative situation. Furthermore, we compare the generalized Eliassen-Palm flux vectors to the ray paths of Rossby wave packets, obtained from WKB ray tracing. In particular, we focus our investigation on the two-dimensional structure of trapped modal waves and wavetrains in a simple linear numerical model. Summarizing our results, we find that along the reflective wall, trapped modal wave structures as well as reflected wavetrains occur with characteristics (e.g., wavenumbers, turning latitudes) similar to the ones computed using asymptotic methods. In a linear sheared flow wave packets are trapped for all zonal wave numbers in contrast to a jet-like mean flow which has a selective effect on the waves; i.e., a turning latitudes phenomenon between the coast and the flow maximum occurs for short waves, while long waves can propagate freely across the zonal mean flow. This comes out clearly when studying the stream lines of the Eliassen-Palm flux vectors of the numerical model simulations. Furthermore, due to the reflected wave activity, the dispersion of Rossby waves is influenced by the southern boundary condition not only in the vicinity of the border but also in regions away from the boundary. These results appear to be important on the one hand for the existence of trapped Rossby waves in large-scale oceanic shear flows along a zonally oriented coast. And, on the other hand for large-scale boundary waves in conceptional atmospheric channel models which can lead to unwanted resonance effects. Received July 18, 2000/Revised June 9, 2001  相似文献   

6.
In this paper,a tropical atmospheric model of relevance to shorts-term climate variations(Wang and Li 1993) is utilized for study of the development of Madden-Julian oscillation.The model contains an interactive process of boundary-layer Ekman convergence and precipitation heating.The model is solved by expanding dependent variables in terms of parabolic cylindrical functions in the meridional direction and truncating three meridional modes n=0,2,4 for equatorial symmetric solutions.The free wave solutions obtained under long-wave approximation are induced as a Kelvin wave and two Rossby waves.After considering the effect of boundary-layer dynamic process,the modified Kelvin wave becomes unstable in long-wave bands with a typical growth rate on an order of 10-6 s-1and an eastward phase speed of 10 m s-1;the most unstable mode is wavenumber one.These theoretical results are consistent with the observed Madden-Julian oscillation in equatorial area.For the two modified Rossby waves,one with a smaller meridional scale(n=4) decays except for extra long-waves;the other with a larger meridional scale(n=2) grows in short-wave bands.This may be relevant to explaining the westward propagation of super cloud clusters in the Madden-Julian oscillation.The theory suggests that the boundary-layer dynamic process is an important mechanism in the development of the Madden-Julian oscillation.  相似文献   

7.
Analysis of the Sea Surface Height (SSH) from satellite altimeters has shown that equatorially trapped Rossby waves exhibit asymmetric cross-equatorial structures; their northern extrema are much larger in magnitude than their southern counterparts. Such asymmetry is inconsistent with the classical theory for the first baroclinic, first meridional equatorially trapped Rossby mode, which predicts that SSH and zonal velocity are symmetric in latitude and the meridional velocity is latitudinally antisymmetric (Matsuno, 1966). Chelton et al. (2003) attributed the observed asymmetry to the mean-shear-induced modifications of first meridional mode Rossby waves. The present paper examines nonlinear rectification of cross-equatorial wave structures in the presence of different zonal mean currents. Nonlinear traveling Rossby waves embedded in shears are calculated numerically in a 1.5-layer model. Nonlinearity is shown to increase the cross-equatorial asymmetry substantially making the northern extrema even more pronounced. However, nonlinearity only slightly increases the magnitude of the westward phase speed.  相似文献   

8.
大气定常波传播的运动学特征的时空变化   总被引:1,自引:0,他引:1  
利用时间平均全球大气环流资料,本文计算了纬向平均位涡的南北梯度的时空分布,以及波动水平传播的临界波数n_s,和垂直传播的临界波数K_c的时空分布。由此研究全球大气定常波传播的运动学特征及其年变化。  相似文献   

9.
Summary A subset of world ocean monthly mean temperature climatology generated by Levitus and Boyer (1994), is utilised to describe the observed seasonal variability of the characteristics of the near-surface isothermal layer and thermocline for the entire tropical Indian Ocean (TIO). The most salient features of the observed annual cycle are described in terms of amplitude and phase of the annual and semi-annual frequencies employing Fourier analysis technique. On the annual mode, the near-surface isothermal layer depth (ILD), exhibits larger variability away from the equator with peak values in the northernmost Arabian Sea, the northernmost Bay of Bengal and the southern TIO, while on the semi-annual mode, it shows larger variability in the central Arabian Sea. The variability of the near-surface isothermal layer temperature (ILT), on the annual mode, is very weak in the warmpool region, and increases with latitude, while on the semi-annual mode, it shows larger variability in the northwestern Arabian Sea. The variability of 20°C isotherm topography (D20), on the annual mode, is weakest in the equatorial region and largest in the coastal regions of the Arabian Sea and the Bay of Bengal and in the southern T10, while on the semi-annual mode, it is prominent in the eastern and western equatorial regions. The thermocline gradient (TG) is very sharp below the warmpool region and diffuses meridionally. On the annual mode, it shows larger variability in the southern TIO, off Somalia and northernmost Arabian Sea, while on the semiannual mode, it shows larger variability in the southwestern Arabian Sea and eastern equatorial Indian Ocean. The relationship between near-surface isothermal layer and thermocline characteristics over an annual cycle are explored through correlation analysis. The correlation between ILD and ILT is strong over much of the basin with the exception of the equatorial and coastal upwelling/downwelling zones where internal ocean dynamics are important. In the southern TIO, entrainment of colder waters appears to be important in maintaining the annual cycle of ILT as strong correlation is noticed between ILT and TG. In the Indo-Pacific throughflow region and another region west of it, the annual Rossby waves appear to control D20, as correlations between D20 and other fields are strong in these regions. A similar strong correlation between D20 and ILD is also noticed in the southeastern Arabian Sea where mode-2 Rossby waves identified in numerical model solutions.With 5 Figures  相似文献   

10.
11.
We investigate the nature of linear instabilities that can arise on eastward-flowing baroclinic currents similar to those found to serve as sites of strong eddy-mean flow interaction in certain mesoscale-resolution ocean circulation studies. The intent is to deduce the dependence of the linear instability mechanism — thought to be operative in some form in these simulations — on the internal parameters characterizing them. Following conventional practice, we adopt as our physical model the two-level quasigeostrophic potential vorticity equations which, in their linearized form, are solved numerically to yield the properties of the most unstable linear waves under a variety of mean flow and environmental conditions. The kinematic and dynamic features of the growing perturbations — preferred wavelength, growth rate and frequency, eddy-mean field energy transfers and vertical distribution of wave amplitude — are shown to be sensitive functions of our nondimensional parameters: (i) α = (U3U1), the ratio of lower to upper level velocity scale amplitude; (ii) X = (RdL), the ratio of the first baroclinic deformation radius to the meridional width of the jet; (iii) δ = (H1H3), the resting layer depth ratio; and (iv) ? = (βL2U), an (inverse) Rossby number based on the northward gradient of the planetary vorticity (β). Viscous effects, although included in the analysis, are shown to be unimportant for values of frictional coefficients typical of recent eddy-resolving ocean model studies. Despite a strong dependence of the details of the linear instability mechanism on environmental factors, the associated unstable eigenmodes do have important structural similarities which are intimately connected with their ability to extract energy from the mean flow.  相似文献   

12.
Development and propagation of equatorial waves are investigated with the model which includes convection -wave convergence feedback and convection-frictional convergence feedback. Two experiments with an initial Kelvin wave (Exp. K) and with an initial Rossby wave (Exp. R) are carried out. The equatorial waves in Exp. R grow much faster than those in Exp. K. The equatorial waves in both experiments follow zonal (eastward / westward) and meridional (poleward) propagation. The equatorial waves can be partitioned into two meridional modes using Parabolic Cylinder Function. An equa?tor mode denotes a wave component with a positive precipitation center at the equator and an off-equator mode rep?resents a wave component with positive precipitation centers off the equator. The equator mode dominates in Exp. K whereeas the off-equator mode dominates in Exp. R. The rapid wave growth in Exp. R is interpreted by analyzing the eddy available potential energy (EAPE) generation. Stronger off-equator mode in Exp. R obtains more EAPE through convection-frictional convergence feedback which results in more rapid wave growth. The relative vorticity tendency is determined by interactions between Earth’s vorticity and lower-troposphere convergence (divergence effect) and between the meridional gradient and lower-troposphere circulation (beta effect). The eastward and poleward propagation of equatorial waves is a result of the divergence effect, and the westward movement is caused by the beta effect.  相似文献   

13.
Time-mean global general circulation data are employed to analyze the temporal and spatial variations ofthe meridional gradient of zonal mean potential vorticity,the critical wavenumber n_s for horizontal wave-propagation,and the critical wavenumber K_c for vertical wave-propagation.Thereby the kinematic charac-teristics in the propagation of atmospheric stationary waves and their annual variations are studied.Resultsshow that in the troposphere n_s and K_c usually decrease with the increase of either latitude or altitude.Synoptic and near-resonant Rossby waves could be trapped during their upward and meridional propagations.These characteristics possess prominent annual variations,especially in the Northern Hemisphere.It is foundthat the spatial and temporal variations of these kinematic characteristics are in good agreement with those ofthe atmospheric wave patterns.  相似文献   

14.
15.
Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes. However, considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes. To better understand such atmospheric teleconnection, several theories of wave energy propagation are reviewed in this paper: (1) great circle theory, which reveals the characteristics of Rossby waves propagating in the spherical atmosphere; (2) westerly duct theory, which suggests a “corridor” through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere; (3) energy accumulation-wave emanation theory, which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes; (4) equatorial wave expansion theory, which further explains the physical mechanisms involved in the interaction between the tropics and extratropics; and (5) meridional basic flow theory, which argues that stationary waves can propagate across the tropical easterlies under certain conditions. In addition, the progress made in diagnosing wave-flow interaction, particularly for Rossby waves, inertial-gravity waves, and Kelvin waves, is also reviewed. The meridional propagation of atmospheric energy exhibits significant annual and interannual variations, closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs, amongst others.  相似文献   

16.
设计了一个热带赤道β-平面的两层海洋模式,在准长波近似下,应用最大截断模分析赤道波的基本形态,指出无论是正压模或斜压模Kelvin波、Rossby波及基本流所对应的“地形Rossby波”是最基本的波系,在基本流的一定切变条件下,它们之间可以耦合出一类不稳定波。在浅混合层近似和“快波近似”下,正压模和斜压模是可以分离的,因此可以分别分析它们的色散特征,由于它们的特征量不同,在同样波长(扰动的纬向尺度)下,扰动的增长率也不同,通过分析得出在一定参数下,斜压模扰动增长率为正压模的2倍。近似分析表明,混合层中流场的增长要快于温跃层,但温跃层的温度增长要比混合层明显。  相似文献   

17.
东亚-太平洋型季节内演变和维持机理研究   总被引:1,自引:1,他引:0  
利用850hPa的纬向风异常建立一个逐候东亚-太平洋(East Asian Pacific,EAP)型指数,研究其季节内演变特征,发现东亚-太平洋型经向波列是东亚夏季风季节内变化的主要模态.其演变过程为:扰动首先出现在北太平洋中部,并通过正压不稳定过程从基本气流中获得能量而发展,在高层罗斯贝波能量向南频散,激发热带对流异常和赤道罗斯贝波,并相互锁相,因赤道罗斯贝波受β效应影响而共同向西移动.热带对流和环流异常在菲律宾附近达到最强,此时在东亚沿岸出现经向三极型波列,此后中低纬度异常继续向西北方向移动,使降水异常在长江流域能维持较长时间.东亚-太平洋型在东亚发展和维持有以下原因:首先,菲律宾暖水上空的对流和低层环流之间存在正反馈;其次,由于海陆热力差异导致暖大陆和冷海洋之间存在特殊的纬向温度梯度和北风垂直切变,东亚-太平洋型在经向上有向北倾斜的斜压结构,能通过斜压能量转换从平均有效位能中获得能量,同时,也能从经向温度梯度的平均有效位能中获得能量.  相似文献   

18.
利用包括边界层爱克曼辐合-降水加热过程在内的短期气候变化模式[1],研究了Madden-Julian振荡[11,12]形成的机制。当经圈方向用抛物圆柱函数展开,并对赤道偶对称解取n=0,2,4三个截断模时,在长波近似下的自由波解,一为向东的Kelvin波,另外两支为向西的Rossby波。当考虑边界层动力影响后,修正后的Kelvin波,其向东传播的速度约为10ms-1,且在长波波段是不稳定的,最不稳定的波出现在纬向一波附近,不稳定增长率的量级约为O(10m-6s-1),理论结果和Madden-Julian振荡在赤道附近主体环流东传的观测事实接近。另外两支修正后的Rossby波,其中经圈尺度较小的那支波,除波长极长的波外,波是阻尼的;但另一支经圈尺度较大的波,在短的波段是不稳定增长的,这似乎可以用来解释Madden-Julian振荡中大尺度超级云团的西传过程。这些结果表明边界层动力过程在Madden-Julian振荡的形成中是一种重要的机制。  相似文献   

19.
The data analyses in the first part of this study have shown that the sea surface temperature anomalies (SSTA) in the eastern equatorial Pacific are significantly correlated with the preceding anomalous convergence of the meridional wind stress near the equator. In order to understand the dynamical role of the convergent meridional wind stress anomalies in the El Nino occurring, an ideal wind stress which converges about the equator is set up based on the observations revealed in the first part. A simple dynamical model of tropical ocean is used to study the response of the tropical ocean to the convergent meridional wind stress. The results show that the convergent wind stress in the eastern equatorial Pacific is favorable for the occurrence of El Nino. When the convergent wind stress exerts on the tropical ocean, the westward propagating Rossby wave is excited, which, on the one hand, makes the mixed layer near the equator become thicker. On the other hand, the westward oceanic currents associated with the Rossby wave appear in the vicinity of the equator. The oceanic currents can drive the upper layer sea water to transfer to the west, which is favorable for the sea water to pile up in the western equatorial Pacific and to accumulate energy for the upcoming warm event.  相似文献   

20.
Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind(RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号