首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Distinct differences of the storm track?Cjet relationship over the North Pacific and North Atlantic are investigated in terms of barotropic and baroclinic energetics using NCEP-2 reanalysis data for the period of 1979?C2008. From fall to midwinter the Pacific storm track (PST) activity weakens following the southward shift of the Pacific jet, whereas the Atlantic storm track (AST) activity remains steady in position and intensifies regardless of the slight southward shift of the Atlantic jet. This study is devoted to seeking for the factors that can contribute to this conspicuous difference between the two storm tracks on climatological subseasonal variation by analyzing eddy properties and local energetics. Different eddy properties over the two oceans lead to different contribution of barotropic energy conversion to the initiation of storm tracks. In the North Atlantic, meridionally elongated eddies gain kinetic energy efficiently from stretching deformation of the mean flow in the jet entrance. On the other hand, the term associated with shearing deformation is important for the initiation of PST. Analysis of baroclinic energetics reveals that the intensification of the AST activity in midwinter is mainly attributed to coincidence between location of maximum poleward and upward eddy heat fluxes and that of the largest meridional temperature gradient over slight upstream of the AST. The relatively large amount of precipitable water and meridional eddy moisture flux along baroclinic energy conversion axis likely provides a more favorable environment for baroclinic eddy growth over the North Atlantic than over the North Pacific. In the meantime, the midwinter minimum of the PST activity is attributable to the southward shift of the Pacific jet stream that leads to discrepancy between core region of poleward and upward heat fluxes and that of meridional thermal gradient. Weakening of eddy-mean flow interaction due to eddy shape and reduction of moist effect are also responsible for the weakening of storm track activities in midwinter when the strongest baroclinicity exists over the North Pacific.  相似文献   

2.
非均匀风场与急流强迫的水体涡旋动力特征模拟   总被引:1,自引:1,他引:0  
通过数值模拟有限区域水气界面由强迫作用驱动形成的水体涡旋及环流动力结构特征,分析非均匀风场、水体急流、两者叠加以及环境边界和地转偏向力等因子的综合影响,探讨此类水体涡旋结构和动力特征。风应力驱动的水体涡旋尺度大,相对深厚,正涡旋具有下凹表面,负涡旋具有上凸表面。水体急流驱动的涡旋形成在急流两侧,对应急流所在深度及厚度尺度相对较小,也较浅,但流速与强度均大于风场驱动的涡旋环流。地形阻挡起着引导涡旋环流走向的作用;同时在北半球地转偏向力对急流侧向负涡旋形成和强度增强更为有利。此外正涡旋对应的辐合辐散势函数强于负涡旋,有利于正涡旋区垂直上升运动强于负涡旋中垂直下沉运动。非均匀风场及水体急流两种强迫叠加作用下,涡旋数量增加、尺度减小,底层的流场形态及强度与表层差异增大。形成的水体涡旋结构呈现多种形态:深厚的整层一致;浅薄的仅维持在上层,或上下层环流相反等。风应力驱动的涡旋以正压性为主,水体急流驱动的涡旋因急流的垂直强切变而具有强的斜压性,在正斜压动能的转换中,正压性涡旋区有斜压动能向正压动能转换,斜压性涡旋区有正压动能向斜压动能转换,均有利于这两个区域正负涡旋的维持。  相似文献   

3.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

4.
The effect of barotropic shear in the basic flow on baroclinic instability is investigated using a linear multilevel quasi-geostrophic β-plane channel model and a nonlinear spherical primitive equation model. Barotropic shear has a profound effect on baroclinic instability. It reduces the growth rates of normal modes by severely restricting their structure, confirming earlier results with a two-layer model. Dissipation, in the form of Ekman pumping and Newtonian cooling, does not change the main characteristics of the effect of the shear on normal mode instability.Barotropic shear in the basic state, characterized by large shear vorticity with small horizontal curvature, also effects the nonlinear development of baroclinic waves. The shear limits the energy conversion from the zonal available potential energy to eddy energy, reducing the maximum eddy kinetic energy level reached by baroclinic waves. Barotropic shear, which controls the level of eddy activity, is a major factor which should be considered when parameterizing the eddy temperature and momentum fluxes induced by baroclinic waves in a climate model.  相似文献   

5.
The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.  相似文献   

6.
正、斜压涡度拟能相互作用对乌拉尔阻塞过程的影响   总被引:1,自引:0,他引:1  
研究表明,正压涡度拟能的增强和减弱是乌拉尔山上空阻塞过程的重要特征,正压涡度拟能增强的主要机制是斜压涡度拟能向正压涡度拟能的转换,而斜压涡度拟能的来源则是阻塞区外斜压涡度拟能向阻塞区的净输送和阻塞区内斜压涡度拟能的净生成。正压涡度拟能减弱的主要机制足耗散机制和β效应。因此。阻塞过程是正、斜压涡度拟能相互作用的结果。纬向斜压风对斜压涡度的输送在阻塞的维持和崩溃中具有重要的作用,经向斜压风对斜压涡度的输送在阻塞环流的建立中具有重要的作用,经向正压风对正压涡度拟能的净输送和斜压风对涡度拟能的净输送也具有重要贡献。  相似文献   

7.
 Comprehensive global energetics analysis is carried out for the NCAR CCM2 with different horizontal resolutions of R15, T42, T63, and T106 to assess the effect of various model truncations on the global energetics characteristics in climate models. Both the energy levels and energy transformations are examined over the zonal wave number domain during a northern winter and summer. In addition to the simulated atmosphere, the ECMWF global analysis during 1986 to 1990 is analyzed for comparison using the same diagnostic scheme. Previous studies have revealed that zonal kinetic energy is supplied by synoptic disturbances in terms of the zonal-wave interactions of kinetic energy. According to our result, however, such an energy flow from eddies to zonal motions is valid only for zonal wave numbers up to about 30. We find that the zonal-wave interactions of kinetic energy change sign beyond wave number 30 where the energy is transformed from zonal to eddies for both the ECMWF and CCM2-T106. The large-scale zonal motions are diffusive against the short waves beyond wave number 30, which may well be parameterized by various forms of the diffusion schemes. We suggest from this result that the atmospheric disturbances with wave numbers lower than 30 are necessary to represent accurately the two-way interactions between zonal and eddy motions, because these waves can actively influence the behavior of the zonal motions. Based on this finding, we suggest that the model resolution of R15 is inadequate for climate studies from the energetics point of view, and that resolution of T42 is the minimum requirement to represent the general circulation adequately. Some other discrepancies are discussed in detail for the coarse resolution climate models. Received: 15 July 1996/Accepted: 3 January 1997  相似文献   

8.
利用大气能量循环框图,对比分析中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(LASG/IAP)全球海-陆-气耦合系统模式(GOALS)两个版本(GOALS-2和GOALS-4),以及观测的全球平均大气能量循环的主要特征,并从能量循环贮蓄和转换项的纬向平均贡献去解释全球积分值改善和转坏的原因,以及诊断分析参数化方案变化后产生的影响.结果表明:模式的两个版本基本上能正确地模拟出全球能量循环的主要特征.旧版本GOALS-2能较好模拟全球积分值,常常是不同符号局地误差的相互抵消结果.新版本GOALS-4中某种局地过程的改善在一些情况下导致了全球积分值的转坏.引入辐射日变化参数化方案可能对能量循环各参数的局地贡献有着明显的影响.如纬向平均有效位能向瞬变涡动有效位能的斜压转换率、瞬变涡动有效位能向瞬变涡动动能的斜压转换率以及定常涡动动能的局地贡献有明显改善.南极地区不合实际的上升运动,是模拟的纬向平均有效位能与纬向平均动能之间的转换项全球积分值为负数的主要原因.  相似文献   

9.
Some important diagnostic characteristics for a model’s physical background are reflected in the model’s energy transport, conversion, and cycle. Diagnosing the atmospheric energy cycle is a suitable way towards understanding and improving numerical models. In this study, formulations of the “Mixed Space-Time Domain”energy cycle are calculated and the roles of stationary and transient waves within the atmospheric energy cycle of the Global-Regional Assimilation and Prediction System (GRAPES) model are diagnosed and compared with the NCEP analysis data for July 2011. Contributions of the zonal-mean components of the energy cycle are investigated to explain the performance of numerical models. The results show that the GRAPES model has the capability to reproduce the main features of the global energy cycle as compared with the NCEP analysis. Zonal available potential energy (AZ) is converted into stationary eddy available potential energy (ASE) and transient eddy available potential energy (ATE), and ASE and ATE have similar values. The nonlinear conversion between the two eddy energy terms is directed from the stationary to the transient. AZ becomes larger with increased forecast lead time, reflecting an enhancement of the meridional temperature gradient, which strengthens the zonal baroclinic processes and makes the conversion from AZ to eddy potential energy larger, especially for CAT (conversion from AZ to ATE). The zonal kinetic energy (KZ) has a similar value to the sum of the stationary and transient eddy kinetic energy. Barotropic conversions are directed from eddy to zonal kinetic energy. The zonal conversion from AZ to KZ in GRAPES is around 1.5 times larger than in the NCEP analysis. The contributions of zonal energy cycle components show that transient eddy kinetic energy (KTE) is associated with the Southern Hemisphere subtropical jet and the conversion from KZ to KTE reduces in the upper tropopause near 30?S. The nonlinear barotropic conversion between stationary  相似文献   

10.
We discuss the nonlinear transfers possible in a quasigeostrophic fluid with a basic stratification taken from oceanic data. The energy and enstrophy conservation laws imply a cascade of energy to larger total scale (including both the horizontal scale, defined as wavelength/2π, and the deformation radius of the vertical mode). The triplet interactions among components with various horizontal scales and vertical structures, represented by the vertical mode numbers, are considered in detail for exchanges involving the barotropic and first three baroclinic modes. The initial transfer rates from one component into the other two are estimated and the most rapid transfers described as a function of the initial scale and mode number. These results suggest that barotropic motions will cascade to larger-scale barotropic motions, first baroclinic small-scale motions will transfer to first baroclinic larger scales, and first baroclinic large-scale motions will cascade to barotropic and first baroclinic motions at the deformation scale. Second and third mode motions prefer to transfer energy into small-scale (second or third mode deformation radius) first and third baroclinic mode motions.We also show the relationship of these triplet interactions to Rossby wave instabilities and resonant triads. For the latter motions, the weakness of the nonlinearity adds additional constraints which impty that the motions will tend to become zonal.  相似文献   

11.
A series of numerical simulations of steady wave flows in a rotating fluid annulus, subject to internal heating and various thermal boundary conditions, is examined to characterise their structures, energetics and potential vorticity transport properties. The last of these characteristics, together with more conventional scaling considerations, indicate the possibility of applying quasi-geostrophic theory to the interior flow in a formulation similar to the inviscid, adiabatic models of Kuo and White.The analytical model of White, describing finite amplitude, neutral baroclinic eddies and mean flows as illustrations of the Charney-Drazin non-acceleration theorem, is then extended to include uniform diabatic heating and the effects of different forms of lateral shear in the background mean zonal flow. Like the solutions discussed by White, those obtained in the present paper consist of steady, internal jet, mean zonal flows, and baroclinic and barotropic Rossby wave components, all having the same three-dimensional wavenumber. Provided the diabatic heating is proportional to the stratification of the background flow, measured by the square of the Brunt-Vaisälä frequency N, the potential vorticity equation remains homogeneous. All the solutions are then characterised by zero net transfer of potential vorticity despite the possibility of non-zero eddy fluxes of heat or momentum and non-trivial Lorenz energy cycles.A series of particular three-component solutions (which, like some of the solutions discussed by White, do not obey conventional lateral boundary conditions) is examined as possible theoretical analogues of the steady waves observed in the numerical simulations of the laboratory flows, and is found to agree encouragingly well in the spatial variations of their mean flows, eddy stream function (pressure) and eddy fluxes of heat and momentum. Potential vorticity fluxes in the numerical simulations are relatively small (though crucially non-zero), supporting the possible analogy with the analytical model and exposing some limitations of the latter in not accounting for weak dissipation and forcing processes present in the laboratory flows.Further implications of the results are discussed, including possible analogies between the laboratory experiments and certain features in planetary atmospheres and oceans.  相似文献   

12.
本文用1979年夏季风试验时期(MONEX)得到的专门观测资料计算了孟加拉湾地区一个季风低压的能量收支,得到(1)无辐散风动能制造项是低压的主要动能制造项。在整个低压生命期,平均无辐散风动能制造为7.40瓦/米2,辐散风动能制造为0.67瓦/米2。这表明正压能量制造过程的重要性;(2)对于扰动动能收支,斜压能量转换和正压能量转换都有重要作用。另外通过边界通量,低压总是从环境得到扰动动能的。   相似文献   

13.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   

14.
G.J. Boer 《大气与海洋》2013,51(4):731-751
Abstract

The change in December‐February climate simulated by the CCC GCM for a doubling of CO2 is viewed from a Northern Hemisphere middle‐latitude persepctive. The simulated change in temperature is such as to reduce equator‐to‐pole and ocean‐to‐land temperature gradients in the body of the troposphere and this is expected to result in less baroclinicity and baroclinic instability, weaker eddies and transports and generally to a decrease in synoptic activity or, in other words, to more “summer‐like” conditions.

The overall “rate of working” of the atmosphere, as measured by the generation of available potential energy, its conversion to kinetic energy and subsequent dissipation, decreases by some 12%. However, while the amount of available potential energy in the atmosphere decreases by about the same amount, the amount of kinetic energy is unchanged. Differences to the mean zonal, standing and transient eddy components of available potential and kinetic energies and to their rates of generation and conversion show that the energy cycle has changed in ways that might not be immediately expected.

Despite the general decrease in activity, the net poleward transport of energy by the atmosphere is remarkably unchanged. This is accomplished with the expected decrease in the transport of dry static energy being off‐set by an increase in latent energy transport. This is true both for mean zonal and eddy transports. That the same amount of energy is transported by a generally less active atmosphere shows that, in a sense, the flow structures are more “efficient” in the warmer climate and calculations are made to quantify this. The transport of energy in latent form is much more efficient due to the strong increase in moisture content that accompanies the temperature increase.  相似文献   

15.
Summary The origin of upper tropospheric cyclonic vortices over the South Atlantic and adjoining Brazil is discussed. Calculations of the barotropic energy exchange term based on observations indicated that in the mean, and during some days, zonal kinetic energy gets converted into eddy kinetic energy. This suggests the occurrence of barotropic instability. Examination of zonal winds for barotropic instability, however, revealed weak growth rates. Thus other mechanisms such as condensation heating, the formation of cyclonic centers downstream of the Bolivian high, and middle latitude coupling might also be important.With 3 Figures  相似文献   

16.
Response of the Kuroshio Current to Eddies in the Luzon Strait   总被引:1,自引:0,他引:1       下载免费PDF全文
The impact of eddies on the Kuroshio Current in the Luzon Strait (LS) area is investigated by using the sea surface height anomaly (SSHA) satellite observation data and the sea surface height (SSH) assimilation data. The influence of the eddies on the mean current depends upon the type of eddies and their relative position. The mean current is enhanced (weakened) as the cyclonic (anticyclonic) eddy becomes slightly far from it, whereas it is weakened (enhanced) as the cyclonic (anticyclonic) eddy moves near or within the position of the mean current; this is explained as the eddy-induced meridional velocity and geostrophic flow relationship. The anticyclonic (cyclonic) eddy can increase (decrease) the mean meridional flow due to superimposition of the eddy-induced meridional flow when the eddy is within the region of the mean current. However, when the eddy is slightly far from the mean current region, the anticyclonic (cyclonic) eddy tends to decrease (increase) the zonal gradient of the SSH, which thus results in weakening (strengthening) of the mean current in the LS region.  相似文献   

17.
西北太平洋纬向扰动海温经验正交函数(EOF)分解第一和第三模态、第二和第四模态分别代表同期黑潮延伸体和亲潮强弱的配置关系,将两者的典型位相合成,可以分别得到延伸体收缩和扩张状态时的典型模态海温,本文以此及气候态海温作为初始海温强迫场,利用CESM1.2.0模式,讨论了延伸体的系统变异对北太平洋风暴轴的影响及其在不同能量转换过程的主要影响机制,结果表明,延伸体收缩状态下,北太平洋风暴轴强度整体加强,而扩张模态下强度减弱。空间分布上,收缩模态下,风暴轴主要体现为经向方向的变化,中心及其以北强度加强,中心以南减弱;扩张状态下,则主要表现为纬向方向的差异,中心及以西强度减弱明显,中心以东有所增强。对能量转换的诊断分析表明,正压能量转换过程对涡动动能的变化贡献很小,且在风暴轴中心附近,其作用主要为消耗涡动动能,延伸体收缩状态下其消耗作用增强,而扩张状态下消耗作用减弱,这一差异主要是由于不同海温异常强迫下瞬变涡旋的形变不同造成;斜压有效位能释放比正压能量转换大一个量级以上,该过程几乎全部通过基流的经向温度梯度和经向涡动热量输送的相互作用完成,在这一过程中大气斜压性(经向温度梯度)起了关键性作用,大气斜压性异常、基流经向温度梯度异常、斜压有效位能释放异常与风暴轴异常的空间分布均具有较好的对应关系,该过程可能也是延伸体海温异常影响北太平洋风暴轴的主要物理过程;涡动有效位能需要进一步转换为涡动动能才能产生瞬变涡旋运动,涡动有效位能释放的量级与斜压有效位能的释放相当,但数值要小,这一过程通过冷暖空气的上升下沉运动完成,延伸体异常模态下,扰动垂直速度和扰动温度的负相关性的变化与涡动有效位能向涡动动能转换的变化也有较好的对应关系。  相似文献   

18.
Summary  A diagnostic energetics analysis is used to study the effects of moisture-related processes on a developing cyclone over the Mediterranean. This is done by using the moist wind component to calculate the energy budget and then the effect due to wind field changes on the kinetic energy budget is illustrated. The horizontal flux convergence serves as a major energy budget source in both cases (actual and moist wind), although the magnitude values of this term are small in the case of the moist wind. Generation of kinetic energy, is generally (in the case of moist wind), a prominent sink during the life cycle of the cyclone, and its values are greater than the corresponding ones for the actual wind field except at the decay period. Subgrid-scale sources of kinetic energy provide a substantial energy gain throughout the life cycle of the cyclone. The values of the dissipation term differ from using the actual or moist components where its values are influenced by the values of the other terms in the budget. The baroclinic generation due to the divergent moist wind component offsets by 80.8% and 12.1% for the barotropic destruction of kinetic energy by the rotational moist wind component. The divergent moist wind component was found to be very important in the synoptic-scale environments of the cyclogenesis. Both demonstrate that the divergent moist wind component is as important as the rotational moist wind component in producing generation and horizontal flux divergence of kinetic energy. Generation of kinetic energy by the divergent moist wind component seems to be a major factor leading to the creation of upper-level wind maxima north of the storm areas. Thus, these diagnostic findings suggest possible modifications to the wind field by investigating the role of the divergent moist wind component and may also be fruitful in exploring the effects of cyclogensis on the large-scale environment. Received April 27, 1998/Revised April 23, 1999  相似文献   

19.
使用NCEP/NCAR40年(1958~1997年)月平均再分析资料,通过动力学论断研究了大气斜压/正压运动动能的变化及其相互转换,分析了亚洲季风变动与这两种动能变化的联系。指出:季风区大气运动动能的组成和变化具有独特的特征。冬季风时期大气斜压运动动能与正压运动动能具有正相关线性关系,斜压运动能向正压运动动能转换;春、秋季无论是东亚还是印度季风区斜压运动动能与正压运动动能之间转换都处于极小值,只是  相似文献   

20.
The local budget of eddy kinetic energy (EKE) for both high-frequency (HF, 2–6 days) and intermediate-frequency (IF, 7–29 days) eddies are evaluated for Northern Hemisphere boreal winter using the 31-year (1979/80–2010/11) NCEP-DOE reanalysis. A new form of EKE equation is used to isolate the kinetic energy generation/destruction due to interactions among eddies of different timescales. The main source of HF EKE is baroclinic conversion that is concentrated in the mid-lower troposphere. Barotropic conversion mainly damps HF EKE and shows positive contributions to IF EKE on the northern flank of the winter-mean tropospheric jet. Interaction between HF and IF eddies acts as a sink for HF EKE and a main source for IF EKE, especially over the eastern ocean basins, confirming the substantial role of synoptic-scale transients in the development of IF phenomena such as atmospheric blocking. Large interannual variability is found for various EKE budget terms. The HF EKE response to El Niño is characterized by a dipole (tri-pole) anomaly over the North Pacific (North Atlantic). Baroclinic conversion is the main driver of the observed changes in HF EKE while barotropic conversion, interaction between HF and IF eddies, and energy flux convergence all play non-negligible roles in determining the final meridional structure of the HF EKE anomalies. Associated with El Niño, IF EKE generally decreases over the North Pacific and increases over the North Atlantic, which mainly result from changes in baroclinic conversion and EKE conversion due to eddy–eddy interactions. The latter is dominated by interaction between IF and LF (low-frequency, 30–90 days) eddies over the North Pacific, and by interactions between HF and IF eddies, and between IF and LF eddies over the North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号