首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Recently it has been suggested that the major influence on the environment from Siberian Traps magmatism was due to the interaction of magma and organic-rich shale and petroleum-bearing evaporites, with the subsequent creation and outburst of toxic gases (Siberian gas venting: SGV model). In part this idea was supported by a U-Pb age of 252.0 ± 0.4 Ma for one of the dolerite sills in the southeastern Siberian Traps: the age corresponds to the Permo-Triassic boundary and its known mass extinctions of biota. In this study two other dolerite sills were dated using zircons by the U-Pb SHRIMP method at 254.2 ± 2.3 Ma and 249.6 ± 1.5 Ma. The former age is in agreement within error with the age previously published for the dolerite sills, whereas the latter age is in agreement with U-Pb ages published for lava and intrusions from the northern Siberian Traps. The new ages corresponds to the Cahngshingian/Wuchiapingian or Permian/Triassic and Spathian/Smithian boundaries, respectively. Review of 40Ar/39Ar and U-Pb SHRIMP ages previously published for the southeastern Siberian Traps shows that three other pulses of magmatism probably took place at respectively Anisian/Spathian, Late/Middle Anisian and Landian/Anisian boundaries. Thus it is possible that the SVG model can be applied also to lesser biotic extinctions and recoveries in proximity and aftermath to the main Permo-Triassic extinction.  相似文献   

2.
Abstract The St Malo region in north-west France contains migmatites and anatectic granites derived by partial melting of metasedimentary protoliths during Cadomian orogenesis at c. 540 Ma. Previously reported Rb–Sr model ages for muscovite and biotite range from c. 550 to c. 300 Ma, and suggest variable resetting of mineral isotopic systems. These rocks display microscopic evidence for variably intense Cadomian intracrystalline plastic strain but record no obvious evidence of penetrative Palaeozoic regional deformation. 40Ar/39Ar mineral ages have been determined to evaluate better the extent, timing and significance of Palaeozoic overprinting. Eleven muscovite concentrates and one whole-rock phyllite have been prepared from various units exposed in the St Malo and adjacent Mancellian regions. In the Mancellian region, muscovite from two facies of the Bonnemain Granite Complex record 40Ar/39Ar plateau ages of c. 527 and 521 Ma. An internally discordant 40Ar/39Ar release spectrum characterizes muscovite from protomylonitic granite within the Cadomian Alexain-Deux Evailles-Izé Granite Complex, and probably records the effects of Variscan displacement along the North Armorican Shear Zone. Muscovite concentrates from anatectic granite and from Cadomian mylonites along ductile shear zones within the north-western sector of the St Malo region exhibit internally discordant 40Ar/39Ar release spectra which suggest variable and partial late Palaeozoic rejuvenation. By contrast, muscovite concentrates from samples of variably mylonitic Brioverian metasedimentary rocks exposed within the south-eastern sector of the St Malo region display internally concordant apparent age spectra which define plateaux of 326–320 Ma. A whole-rock phyllite sample from Brioverian metasedimentary rocks exposed along the eastern boundary of the St Malo region displays an internally discordant argon release pattern which is interpreted to reflect the effects of a partial late Palaeozoic thermal overprint. Muscovite from the Plélan granite, part of the Variscan Plélan-Bobital Granite Complex, yields a 40Ar/39Ar plateau age of c. 307 Ma. The 40Ar/39Ar results indicate that Cadomian rocks of the St Malo region have undergone a widespread and variable Palaeozoic (Carboniferous) rejuvenation of intracrystalline argon systems which apparently did not affect the Mancellian region. This rejuvenation was not accompanied by penetrative regional deformation, and was probably of a static thermal–hydrothermal origin. The heat source for rejuvenation was probably either the result of heating during Variscan extension or advection from Variscan granites which are argued to underlie the St Malo region.  相似文献   

3.
Abstract 40Ar/39Ar data collected from hornblende, muscovite, biotite and K-feldspar constrain the P-T-t history of the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. These data show two periods of rapid cooling, the first between c. 500 and c. 325° C at rates ≥25° C Ma-1, and the second between c. 250 and c. 200°C. For high-T cooling, 40Ar/39Ar ages are spatially disparate and depend on metamorphic grade: rocks that record deeper and hotter peak metamorphic conditions have younger 40Ar/39Ar ages. Sillimanite- and kyanite-grade rocks in the south-central part of the complex cooled latest: 40Ar/39Ar Hbl = 73–77 Ma, Ms = 67–70 Ma, Bt = 68 Ma, and oldest Kfs = 65 Ma. Thermobarometry and P-T path studies of these rocks indicate that maximum burial of 26–30 km at 575–625° C may have been followed by as much as 10 km of exhumation with heating of 25–50° C. Staurolite-grade rocks have intermediate 40Ar/39Ar ages: Hbl = 84–86 Ma, Ms = 71 Ma, Bt = 72–75 Ma, and oldest Kfs = 80 Ma. Thermobarometry on these rocks indicates maximum burial of 19–26 km at temperatures of 550–580° C. Garnet-grade rocks have the oldest ages: Ms = 72 Ma and oldest Kfs = 91 Ma; peak P-T conditions were 525–550° C and 5–7 kbar. Regional metamorphic temperatures for greenschist facies rocks south of the Beagle Channel did not exceed c. 300–325° C from 110 Ma to the present, although the rocks are only 2 km from kyanite-bearing rocks to the north. One-dimensional thermal models allow limits to be placed on exhumation rates. Assuming a stable geothermal gradient of 20–25° C km-1, the maximum exhumation rate for the St-grade rocks is c. 2.5 mm yr-1, whereas the minimum exhumation rate for the Ky + Sil-grade rocks is c. 1.0 mm yr-1. Uniform exhumation rates cannot explain the disparity in cooling histories for rocks at different grades, and so early differential exhumation is inferred to have occurred. Petrological and geochronological comparisons with other metamorphic complexes suggest that single exhumation events typically remove less than c. 20 km of overburden. This behaviour can be explained in terms of a continental deformation model in which brittle extensional faults in the upper crust are rooted to shallowly dipping ductile shear zones or regions of homogeneous thinning at mid- to deep-crustal levels. The P-T-t data from Cordillera Darwin (1) are best explained by a ‘wedge extrusion’model, in which extensional exhumation in the southern rear of the complex was coeval with thrusting in the north along the margin of the complex and into the Magallanes sedimentary basin, (2) suggest that differential exhumation occurred initially, with St-grade rocks exhuming faster than Ky + Sil-grade rocks, and (3) show variations in cooling rate through time that correlate both with local deformation events and with changes in plate motions and interactions.  相似文献   

4.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

5.
Abstract 40Ar/39Ar age spectrum analysis of phengite separates from Naxos, part of the Attic Cycladic Metamorphic Belt in Greece, indicates that cooling following high-pressure, low- to medium-temperature metamorphism, M1, occurred about 50 Ma ago. Phengite has 40Ar* gradients that suggest that part of the scatter observed in conventional K–Ar ages was caused by diffusion of radiogenic argon from the minerals during a younger metamorphism, M2. In central Naxos, this metamorphism (M2) has overprinted the original mineral assemblages completely, and is associated with development of a thermal dome. Excellent 40Ar/39Ar plateaus at 15.0 ± 0.1 Ma, 11.8 ± 0.1 Ma, and 11.4 ± 0.1 Ma, obtained on hornblende, muscovite and biotite, respectively, from the migmatite zone, indicate that relatively rapid cooling followed the M2 event, and that no significant thermal overprinting occurred subsequent to M2. Toward lower M2 metamorphic grade, 40Ar/39Ar plateau ages of hornblendes increase to 19.8 ± 0.1 Ma; concomitantly the proportion of excess 40Ar in the spectra increases as well. We propose that the peak of M2 metamorphism occurred beween 15.0 and 19.8 Ma ago. K–Ar ages of biotites from a granodiorite on the west coast are indistinguishable from those found in the metamorphic complex, and hornblende K–Ar ages from the same samples are in the range 12.1–13.6 Ma. As the latter ages are somewhat younger than most ages obtained from the metamorphic complex, intrusion of the granodiorite most likely followed the peak of the M2 metamorphism. The metamorphic evolution of Naxos is consistent with rapid crustal thickening during the Cretaceous or early Tertiary, causing conditions at which supracrustal rocks experienced pressures in the range 900–1500 MPa. Transition to normal crustal thicknesses ended the M1 metamorphism about 50 Ma ago. The M2 metamorphism and granodiorite intrusion occurred during a period of heat input into the crust, possibly related to the migration of the Hellenic volcanic ar°C in a southerly direction through the area.  相似文献   

6.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   

7.
Silicate and troilite from IAB iron meteorites were dated by the 40Ar-39Ar technique. Silicate from four IAB meteorites gave well-defined apparent-age plateaus which accounted for 71–99% of the released 39Ar. At low temperatures, only Copiapo showed appreciable loss of 40Ar, while Mundrabilla and Woodbine released excess 40Ar. The plateau ages are: 4.50 Byr for Copiapo, 4.57 Byr for Mundrabilla, 4.57 Byr for Woodbine, 4.54 Byr for unetched Pitts, and 4.57 Byr for etched Pitts; the 1σ error in each case is ± 0.03 Byr. A poorly-defined age plateau for Landes gives an age of 4.48 Byr, while the total K-Ar age (4.55 Byr) is significantly higher. The average (40Ar/36Ar)trapped ratio for all silicate samples is 0.4 ± 0.4.Simple and undisturbed K-Ar systems are rare for meteorites, yet it appears to be a common feature for IAB silicates. In addition, plateau ages of IAB silicates are as old or older than the mean age of unshocked chondrites (4.47 Byr).Troilite samples yielded complex patterns which were evaluated via 40Ar/36Ar vs 39Ar/36Ar plots. Data for Pitts troilite are consistent with silicate and troilite retaining Ar at about the same time initially, but then 4.25 Byr ago nearly all the Ar in troilite was redistributed. The 700–1000°C points for Mundrabilla troilite define a line which gives an age of 6.2 Byr and (40Ar/36Ar)trapped = 42. This line may be an artifact, perhaps produced by homogenization of Ar and K.Approximate estimates of cosmic-ray exposure ages are 240 Myr for Landes, 130 Myr for Copiapo, 190 Myr for Woodbine, 170 Myr for Mundrabilla troilite, and 60 Myr for Pitts troilite.The I-Xe study of these same samples revealed a good correlation between well-defined I-Xe ages of silicates and Ni contents of metal (Niemeyer, 1979). The poorer resolution of the 40Ar-39Ar technique hampers a similar evaluation; nevertheless, plateau ages of the silicates suggest a systematic trend with Ni contents.  相似文献   

8.
The Schistes Lustrés (SL) suture zone occupies a key position in the Alpine chain between the high‐pressure (HP) Brianconnais domain and the ultrahigh‐pressure (UHP) Dora Maira massif, and reached subduction depths ranging from c. 40–65 km (Cottian Alps). In order to constrain the timing of HP metamorphism and subsequent exhumation, several phengite generations were differentiated, on the basis of habit, texture, paragenesis and chemistry, as belonging to the first or second exhumation episode, respectively, D2 or D3, or to earlier stages of the tectono‐metamorphic evolution. Ten carefully selected samples showing D2, D3 (D2 + D3), or earlier (mostly peak temperature) phengite population(s) were subjected to laser probe 40Ar/39Ar analysis. The data support the results of the petrostructural study with two distinct age groups (crystallization ages) for D2 and D3 phengite, at 51–45 and 38–35 Ma, respectively. The data also reveal a coherent age cluster, at 62–55 Ma, for peak temperature phengite associated with chloritoid which were preserved in low strain domains. The age of the D3 event in the SL complex appears very similar to ages recently obtained for greenschist facies deformation on the border of most internal crystalline massifs. Exhumation rates of the order of 1–2 mm yr?1 are obtained for the SL complex, which are compatible with velocities documented for accretionary wedge settings. Similarly, cooling velocities are only moderate (c.5 °C Myr?1), which is at variance with recent estimates in the nearby UHP massifs.  相似文献   

9.
In this paper we present new 40Ar/39Ar data of volcanic ash layers intercalated in the astronomically dated sections of Monte dei Corvi and Monte Gibliscemi (Italy) to obtain better radioisotopic time constraints on the Serravallian/Tortonian boundary and to confirm the intercalibration of radioisotopic and astronomical time proposed by Kuiper et al. [2004 ; Fish Canyon Tuff (FCT)-sanidine at 28.21 ± 0.03 Ma]. The latter intercalibration is supported by astronomically calibrated FCT sanidine ages for two ash layers at Monte Gibliscemi (GiF-1: 28.28 ± 0.04; GiD-3: 28.16 ± 0.04 Ma; ±1 SE). As a consequence, our results support the astronomically calibrated age of 11.608 Ma for the Tortonian Global Stratotype Section and Point and, hence, the tuning of the Serravallian/Tortonian boundary interval. The Ancona and Respighi levels at Monte dei Corvi give a more diffuse picture, possibly because of contamination with detrital or xenocrystic material and the inferior quality of biotite for intercalibration purposes.  相似文献   

10.
The combination of metamorphic petrology tools and in situ laser 40Ar/39Ar dating on phengite (linking time of growth, compositions and P–T conditions) enables us to identify a detailed P–T–d–t path for the still debated tectonometamorphic evolution of the Nevado‐Filabride complex and infer new geodynamic‐scale constraints. Our data show an isothermal decompression (at 550 °C) from 20 kbar for the Bédar‐Macael unit and 14 kbar for the Calar Alto unit down to c. 3–4 kbar for both units at 2.8 mm year?1. At 22–18 Ma, this first part of the exhumation is followed by a final exhumation at 0.6 mm year?1 along a high‐temperature low‐pressure (HTLP) gradient of c. 60 °C km?1. The age of the peak of pressure is not precisely known but it is shown that it is around 30 Ma and possibly older, which is at variance with recent models suggesting a younger age for high‐pressure (HP) metamorphism. Most of the exhumation is related to late‐orogenic extension from c. 30 to 22–18 Ma. Thus the formation of the main ductile extensional shear zone, the Filabres Shear Zone (FSZ), occurred at 22–18 Ma and is clearly associated with a top‐to‐the‐west shear sense once the FSZ is well localized. The transition from ductile to brittle then occurred at c. 14 Ma. The final exhumation, accommodated by brittle deformation, occurred from c. 14 to 9 Ma and was accompanied, from 12 to 8 Ma, by the formation of nearby extensional basins. The duration of the extensional process is c. 20 Myr which argues in favour of a progressive slab retreat from c. 30 to 9 Ma. The change in the shape of the P–T path at 22–18 Ma together with strain localization along the main top‐to‐the‐west shear zone suggests that this date corresponds to a change in the direction of slab retreat from southwards to westwards.  相似文献   

11.
An attempt to date deep-sea igneous rocks reliably was made using the 40Ar/39Ar dating technique. It was determined that the 40Ar/39Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40Ar in deep-sea basalts. Excess 40Ar is released throughout the extraction temperature range and cannot be distinguished from 40Ar generated by in situ40K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40Ar/39Ar technique. Irradiation induced 39Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation.  相似文献   

12.
The hypothesis that the Permo–Triassic boundary (PTB) mass extinctions were caused by flood basalt volcanism in Russia (Siberian Traps) and/or China (the Emeishan Traps) is investigated from the point of view of time of occurrence (40Ar/39Ar ages). Numerous published ages in the literature are rejected as good estimates of the time of crystallization. The filters applied in this respect are (a) statistical reliability of plateau/isochron sections of stepheating data and (b) the alteration state of the material that was dated. Alteration appears to be ubiquitous, unsurprising since most of the material dated was used without acid leaching – a procedure that is effective in yielding fresh(er) samples. Of ∼70 ages in the literature for the main pulse of Siberian Trap volcanism, less than ten prove to be reliable ages. Similar techniques applied to 40Ar/39Ar for the Emeishan Traps, leaves only a single reliable age for the magmatic episode. These ages are compared to both published and new 40Ar/39Ar ages for the PTB as based on analysis of minerals from critical ash beds in China. There is good overlap in the ages (PTB – 250.0 ± 0.1 Ma, Siberian Trap lavas – 250.1 ± 0.4 Ma), lending credence to a genetic link between the formation of the Siberian Traps and the faunal extinction event at the PTB. A similar link for the formation of the Viluy Traps (Russia) and the Late Devonian extinction event is investigated; only a single reliable 40Ar/39Ar age is available for the Viluy Traps, and falls close to the interpolated age for the Frasnian–Fammenian boundary. The use of the unspiked K–Ar technique to yield accurate ages for such (altered) samples is questioned.A review of U–Pb data pertinent to these problems suggests a close temporal link between the formation of the Siberian Traps and the PTB. Comparison of U–Pb and 40Ar/39Ar ages for the PTB, raises questions about the accuracy of high precision sanidine ages, possibly resulting from very slow leakage of 40Ar1 from this mineral.  相似文献   

13.
In the Caledonide orogen of northern Sweden, the Seve Nappe Complex is dominated by rift facies sedimentary and mafic rocks derived from the Late Proterozoic Baltoscandian miogeocline and offshore-continent–Iapetus transition. Metamorphic breaks and structural inversions characterize the nappe complex. Within the Sarek Mountains, the Sarektjåkkå Nappe is composed of c. 600-Ma-old dolerites with subordinate screens of sedimentary rocks. These lithological elements preserve parageneses which record contact metamorphism at shallow crustal levels. The Sarektjåkkå Nappe is situated between eclogite-bearing nappes (Mikka and Tsäkkok nappes) which underwent high-P metamorphism at c. 500 Ma during westward subduction of the Baltoscandian margin. 40Ar/39Ar mineral ages of c. 520–500 Ma are recorded by hornblende within variably foliated amphibolite derived from mafic dyke protoliths within the Sarektjåkkå Nappe. Plateau ages of 500 Ma are displayed by muscovite within the basal thrust of the nappe and are consistent with metamorphic evidence which indicates that the nappe escaped crustal depression as a result of detachment at an early stage of subduction. Cooling ages recorded by hornblende from variably retrogressed eclogites in the entire region are in the range of c. 510–490 Ma and suggest that imbrication of the subducting miogeocline was followed by differential exhumation of the various imbricate sheets. Hornblende cooling ages of 470–460 Ma are recorded from massive dyke protoliths within the Sarektjåkkå Nappe. These are similar to ages reported from the Seve Nappe Complex in the central Scandinavian Caledonides. Probably these date imbrication and uplift related to Early Ordovician arrival of outboard terranes (e.g. island-arc sequences represented by structurally lower horizons of the Köli Nappes). Metamorphic contrasts and the distinct grouping of mineral cooling ages suggest that the various Seve structural units are themselves internally imbricated, and were individually tectonically uplifted through argon closure temperatures during assembly of the Seve Nappe Complex. The cooling ages of 520–500 Ma recorded within Seve terranes and along terrane boundaries of the Sarek Mountains provide evidence of significant accretionary activity in the northern Scandinavian Caledonides in the Late Cambrian–Early Ordovician.  相似文献   

14.
年轻火山岩的定年:进展与问题   总被引:1,自引:1,他引:0  
杨列坤  王非 《岩石学报》2018,34(1):23-35
年轻火山岩定年对人类的起源与进化、地质年表建立、古环境演化、火山灾害、岩浆演化及地球动力学等研究非常重要。由于年轻样品放射性成因子体积累较少、大气氩含量高,微量的过剩氩极难识别,使得年轻火山岩及其沉积地层高精度定年一直是地质年代学中最具挑战性的课题之一。过去几年,年轻火山岩定年在技术上的进展主要体现在定年精度和准确度不断提升,尤其是利用新型多接收稀有气体质谱对单颗粒样品进行逐步升温~(40)Ar/~(39)Ar定年,是方法学上最重要的进展之一。本文总结了年轻火山岩~(40)Ar/~(39)Ar定年的现状、影响因素和相关定年技术及应用,以引起大家的关注和思考,共同提高我国年轻火山岩定年的技术水平。利用新型多接收质谱和创新的实验方法,通过对全球重要火山喷发事件和年轻国际标准样的研究,广泛开展实验室间的对比是提高国内~(40)Ar/~(39)Ar年代学水平并在年轻火山岩定年中取得突破的重要途径,也是当前~(40)Ar/~(39)Ar年代学研究的重要方向。  相似文献   

15.
Recent geological studies performed at Etna allow reassessing the stratigraphic frame of the volcano where distinct evolutionary phases are defined. This stratigraphic reconstruction was chronologically constrained on the basis of a limited number of U–Th and K–Ar age determinations whose uncertainty margins are sometimes too wide. For this reason, we successfully adopted at Etna the 40Ar/39Ar technique that allowed obtaining more precise age determinations. The incremental heating technique also gives information on sample homogeneity, and potential problems of trapped argon. Five samples were collected from stratigraphically well-controlled volcanic units in order to chronologically define the transition between the fissure-type volcanism of the Timpe phase to the central volcanism of the Valle del Bove Centers. Isotopic ages with an uncertainty margin of 2–4% have been obtained emphasizing that this transition occurred (130–126 ka) without significant temporal hiatus.  相似文献   

16.
(极)年轻火山岩激光熔蚀40Ar/39Ar定年   总被引:3,自引:2,他引:1  
对中国大量年轻或/和极年轻火山岩的定年实践研究表明,(极)年轻火山岩的激光熔蚀40Ar/39 Ar定年具有不同于第四纪以前喷发火山岩定年的显著特点.激光熔蚀40Ar/39Ar定年技术因为本底低、样品用量小以及与现代惰性气体同位素质谱设备在灵敏度、高精度方面的相一致,在年轻火山岩的定年中得到深入运用.借助激光在年轻或/和极年轻火山岩的40 Ar/39 Ar定年中,实践证明,样品形成时限越年轻(特别是相当于第四纪时期的样品),Nier值与样品中初始氩比值的偏离会引起K-Ar和40Ar/39 Ar表观年龄的偏差越大.对于小于0.2Ma的样品,Nier值与样品中初始氩比值的偏离对K-Ar和40Ar/39Ar表观年龄的偏差影响呈指数增长;当样品年龄相对较老(老于第四纪)时,Nier值和初始氩比值的偏离对K-Ar和40Ar/39 Ar表观年龄的影响较小.以40Ar/ArAr定年为出发点,定量给出界定年轻与极年轻火山岩的年龄:2~0.2Ma的火山岩界定为年轻火山岩,0.2Ma以来的火山岩称为极年轻火山岩.实验结果还证实,测定(极)年轻火山岩基质年龄时要尽量剔除非同源分馏的斑晶,以便去除斑晶可能带来的过剩氩影响;年轻火山岩样品的测年,应根据岩石结构和粒度特征选取合适的粒度,通常情况下,推荐0.2mm颗粒直径(60~80目)为理想粒径;年轻火山岩样品在快中子辐照后冷却放置时间不宜过长,否则造成37 Ar测不准,影响数据结果,带来较大偏差;激光40Ar/39Ar精细定年对标准样品的均一性有很高的要求,通过标定常用的国内外监测标样发现,标样SB-778-Bi,Bem4M,BT-1均一性很好,适合用作激光熔蚀40Ar/39Ar定年监测;测试数据的处理中,火山岩喷发后冷却结晶中同时形成的斑晶和基质的等时线处理能够帮助获得客观真实和精细的年龄结果.在此基础上,北京大学惰性气体同位素实验室建成了专用于(极)年轻火山岩精细定年的激光熔蚀40Ar/39Ar定年实验流程.  相似文献   

17.
Abstract. Ages for thirty adularia samples collected from various veins were in the Hishikari gold deposit determined by 40Ar/39Ar dating to constrain the timing of adularia‐quartz vein formation and to determine the temporal change in temperature of hydrothermal fluid. Plateau ages were obtained from all adularia samples, and significant excess 40Ar is not recognized from inverse isochrones. The duration of mineralization within individual veins was determined by adularia ages from the early and late stages of mineralization within the same vein. The durations of mineralization in the Daisen‐1, Daisen‐3, Hosen‐2 and Keisen‐3 veins in the Honko‐Sanjin zone were 7,000, 140,000, 160,000 and 170,000 years, respectively. The durations of mineralization in the Seisen‐2 and Yusen‐1–2 veins in the Yamada zones were 360,000 and 320,000 years, respectively. Mineralization lasted for a relatively longer period in individual veins at the Yamada zone. Mineralization ages from the Honko‐Sanjin zone range from 1.04 to 0.75 Ma, and most mineralization ages are concentrated in a short period from 1.01 to 0.88 Ma. In contrast, mineralization ages for the Yamada zone range from 1.21 to 0.64 Ma. These results indicate that fracturing and subsequent vein formation lasted for a longer period in the Yamada zone (about 570,000 years) compared with those events in the Honko‐Sanjin zone (about 290,000 years). The homogenization temperatures of liquid‐rich fluid inclusions in columnar adularia used for age determination were determined to be 223°C on average, and most of these temperatures range from 180 to 258d?C. No significant temporal change in homogenization temperature is recognized in this study. However, adularia in the Keisen veins indicated higher homogenization temperatures compared with elsewhere in the deposit, suggesting that the principal ascent of mineralizing hydrothermal fluid was via the Keisen veins.  相似文献   

18.
由于较低的钾元素含量以及过剩氩的存在,长期以来对硅质岩的40Ar/39Ar定年一直存在较大难度。近年来,由于仪器水平的不断提高,新实验技术和方法的应用,特别是激光全熔40Ar/39Ar定年技术的应用,40Ar/39Ar定年方法具有了足够高的测试精度和稳定的低本底水平,可以满足测试极低钾元素含量的硅质岩样品的要求。利用多组矿物颗粒测试数据计算等时线年龄的方法可以很好地去除过剩氩对硅质岩年龄的影响。本文利用激光全熔40Ar/39Ar定年方法对新疆准噶尔盆地边缘的两个硅质岩样品进行了定年研究。采自白碱滩地区的08BJT-3样品的年龄测试结果为294±14Ma,该年龄结果与硅质岩样品所处的晚石炭世地层沉积年代基本一致。采自卡拉麦里地区的KML-2样品的年龄测试结果为266±14Ma,该年龄结果与强烈变形改造硅质岩样品的卡拉麦里构造变形带活动年代十分一致,表明激光全熔40Ar/39Ar定年方法可以准确地对硅质岩进行定年。  相似文献   

19.
Conventional K-Ar ages of tholeiitic basalts of the Ferrar Group in the central Transantarctic Mountains indicate significant loss of radiogenic 40Ar from this unit over much of its outcrop area. Argon loss varies inversely with amount of devitrified matrix in the basalts, which have not been thermally or tectonically disturbed since extrusion. 40Ar/19Ar age-spectra of these tholeiites are generally discordant and indicate significant inhomogeneity in the distribution of radiogenic 40Ar with respect to 39Ar, but are distinctly different from release patterns of thermally disturbed samples. Amounts of argon redistribution vary directly with amounts of devitrification and are reflected in progressive modification of the age spectra. A model of redistribution of radiogenic 40Ar by devitrification of originally glassy matrix is suggested that is consistent with disturbance of the conventional K-Ar systematics as well as the 40Ar/39Ar age-spectra. Samples with substantial redistribution but minor loss of radiogenic argon yield age spectra whose apparent ages decrease from low-temperature to high-temperature steps, similar to those reported for some lunar basalts, breccias, and soils. Modification of all the age spectra is attributed to redistribution of radiogenic 40Ar during progressive devitrification, although 39Ar-recoil effects suggested by Turner and Cadogan (1974) may be a factor in some cases. Where devitrification involves most potassium sites within the basalt, 40Ar/39Ar age-plateaux may be formed that have no geologic significance.  相似文献   

20.
K-Ar和40Ar/39Ar定年数据质量评价与Q值提出   总被引:2,自引:2,他引:0  
K-Ar和K-Ar/39Ar的定年测试质量的评价是正确运用测试结果的前提.过去的研究,多通过仪器测试的偏差和误差传递来评价测试结果可靠性和精度.MSWD和Probability的提出,给出测试的内外误差概念,因考虑了仪器和样品二者的匹配性而得到广泛应用.这也说明,影响K-Ar和40Ar/39 Ar的定年测试结果的因素可以是来自仪器设备,也可以来自样品自身的特性.本文由K-Ar和40 Ar/39 Ar的定年技术的原理、流程为出发点,通过对各个测试项的误差传递和对结果精度影响的数学方法评估,提出了影响测试精度的Q1和Q2参数,分别代表与样品有关的属性.Q1是样品钾含量、囚禁36 Ar的含量、以及样品40Ar/36Ar的初始比值的综合参数,是决定仪器测试中误差传递系数大小的重要影响因子.Q2是样品钾含量、囚禁36 Ar的含量、以及样品40 Ar/36 Ar的初始比值误差的综合参数,用来评价样品等时线年龄精度.在地质意义上,Q2是评价样品是否满足“同源、同时、封闭”特性的重要量化指标.根据这两个参数,可以判别测试数据质量优劣是源于测试仪器,还是样品属性.由Q1和Q2的分析可知,任何一项K-Ar和40Ar/39 Ar的定年测试都应该充分考虑仪器性能和样品属性,设计合理的测试流程是K-Ar和40 Ar/39 Ar的定年获得较高质量数据的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号