首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells.  相似文献   

2.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

3.
Recent developments in subsurface intake systems for ocean desalination plants are considering use of angled wells (slant wells) completed in permeable materials beneath the ocean floor. Conventional drawdown equations for vertical or horizontal wells are inadequate to properly describe the drawdown distribution in the vicinity of slant wells. Using the principle of superposition combined with standard well hydraulics, universal drawdown equations (UDE) are presented which calculate the drawdown distribution in the vicinity of production wells with inclination angles ranging from 0° (horizontal wells) to 90° (vertical wells). The method is computationally simple and other than the normal assumptions for standard well equations, it only requires that the calculated drawdown represent the drawdown which would be measured in a fully penetrating observation well. Solutions using the UDE are developed for confined, unconfined and semi‐confined (leaky) aquifers and compared with analytical equations for vertical and horizontal wells, and with a numerical model for slant wells. The UDE is also applied to pumping test data from the Dana Point slant well project in Southern California.  相似文献   

4.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

5.
The buried-valley aquifers that are common in the glacial deposits of the northern hemisphere are a typical case of the strip aquifers that occur in many parts of the world. Pumping from a narrow strip aquifer leads to much greater drawdown and much more distant drawdown effects then would occur in a sheet aquifer with a similar transmissivity and storage coefficient. Widely used theories for radial flow to wells, such as the Theis equation, are not appropriate for narrow strip aquifers. Previously published theory for flow to wells in semiconfined strip aquifers is reviewed and a practical format of the type curves for pumping-test analysis is described. The drawdown response of strip aquifers to pumping tests is distinctive, especially for observation wells near the pumped well. A case study is presented, based on extensive pumping test experience for the Estevan Valley Aquifer in southern Saskatchewan, Canada. Evaluation of groundwater resources in such buried-valley aquifers needs to take into account the unusually large drawdowns in response to pumping.  相似文献   

6.
Aquifer Properties Determined from Two Analytical Solutions   总被引:3,自引:0,他引:3  
In the analysis of pumping test data, the quality of the determined aquifer parameters can be greatly improved by using a proper model of the aquifer system. Moench (1995) provided an analytical solution for flow to a well partially penetrating an unconfined aquifer. His solution, in contrast to the Neuman solution (1974), accounts for the noninstantaneous decline of the water table (delayed yield). Consequently, the calculated drawdown in these two solutions is different under certain circumstances, and this difference may therefore affect the computation of aquifer properties from pumping test data. This paper uses an inverse computational method to calculate four aquifer parameters as well as a delayed yield parameter, α1 from pumping test data using both the Neuman (1974) and Moench (1995) solutions. Time-drawdown data sets from a pumping test in an unconfined alluvial aquifer near Grand Island, Nebraska, were analyzed. In single-well analyses, horizontal hydraulic conductivity values derived from the Moench solution are lower, but vertical hydraulic conductivity values are higher than those calculated from the Neuman solution. However, the hydraulic conductivity values in composite-well analyses from both solutions become very close. Furthermore, the Neuman solution produces similar hydraulic conductivity values in the single-well and composite-well analyses, but the Moench solution does not. While variable α1, seems to play a role in affecting the computation of aquifer parameters in the single-well analysis, a much smaller effect was observed in the composite-well analysis. In general, specific yield determined using the Moench solution could be slightly higher than the values from the Neuman solution; however, they are still lower than the realistic values for sand and gravel aquifers.  相似文献   

7.
8.
Using the type-curve methods of Boulton (1963) and Neuman (1972), and comparisons, at various times, of the cumulative volume of water pumped to the volume of the water-table drawdown cone (volume-balance method), values of specific yield were obtained from pumping test data from numerous piezometers in an unconfined sand aquifer. The long-term value of specific yield for the aquifer was determined from measurements of the laboratory drainage curve of the aquifer material. The volume-balance method gave specific yield values of 0.02, 0.05, 0.12, 0.20, 0.23, and 0.25 at times of 0.25, 0.66, 10, 26, 45, and 65 hours, respectively, indicating a gradual increase in specific yield and an asymptotic approach to the long-term value of 0.30 determined from the laboratory method. The type-curve methods provided values of 0.07 and 0.08, which correspond to the volume-balance values at early times, but which are less than one-third of the value obtained from the laboratory method and from the volume-balance method applied at the end of the pumping test (2.7 days). The type-curve procedures therefore provide unrealistically low values of specific yield for application to problems concerning the long-term yield characteristics of the aquifer. The observed trend towards increasing values of specific yield with increasing duration of pumping, and the vertical hydraulic head profiles that were measured during the pumping test indicate that both delayed drainage from above the water table and downward hydraulic gradients in the saturated zone can be important hydraulic effects contributing to the delayed-drawdown segment that is characteristic of time-drawdown graphs for unconfined aquifers.  相似文献   

9.
Jin Xu  Xudong Wang 《Ground water》2016,54(5):719-726
A finite layer approach for the general problem of three‐dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three‐layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.  相似文献   

10.
AGalerkin finite-element model coupled with a particle tracking routine was developed to analyze the flow and transport dynamics near a high-capacity irrigation well. The model was used to compute the head distribution around the pumping well, to determine the area of influence, and to define ground water flowlines during short-term pumping periods typical of those used to collect water quality samples from high-capacity wells. In addition to hypothetical example results, the model was used to qualitatively analyze data obtained from pump-and-sample experiments conducted in an unconfined alluvial aquifer within the Platte River valley of south-central Nebraska where nitrate-nitrogen (NO3-N) contamination is prevalent.
Simulation results of both the hypothetical and field cases suggest that short-term pumping events, impact a limited volume of aquifer. The area of influence and flowlines are affected by aquifer anisotropy, pumping rate, and well construction characteristics). Ground water above or below the screened intervals does not enter a partially penetrating well in anisotropic aquifers. In aquifers where NO3-N concentration varies vertically and horizontally, waler quality samples from an irrigation, or other high-capacity, well provide only limited information about ground water contamination. A numerical model is thus recommended for calculating the area of influence and determining flowlines around high-capacity wells so that information derived from water quality samples collected at the wellhead can be better interpreted.  相似文献   

11.
Thomas J. Burbey   《Journal of Hydrology》2006,330(3-4):422-434
Field measurements consisting of water levels from a municipal well and three-dimensional surface deformations and strains from high-precision GPS measurements at various radial distances from the well were collected as part of a 62-day controlled aquifer test at Mesquite, NV. These measurements were used as observations in several numerical models and a parameter estimation code to characterize and constrain hydraulic and mechanical properties of a 400 m thick basin-fill aquifer. A parsimonious approach was used in conceptualizing the aquifer system. Nonetheless, results from the calibrated deformation and flow models accurately reproduced the observed head and deformations during the first 20 days of pumping, the time at which a new equilibrium was achieved. Surface deformations were shown to reflect hydraulic anisotropy and direction of principal conductivity. In addition, the radius of influence and cone of depression from pumping was approximated in spite of the fact that no monitoring well data existed at the site. Sensitivity analysis indicates that cyclical head values are most sensitive to changes in horizontal hydraulic conductivity, while time-dependent vertical deformations are most sensitive to changes in skeletal specific storage. This investigation shows that GPS monitoring can be used in place of costly monitoring wells to characterize aquifers for water-management purposes where skeletal deformation tends to be elastic.  相似文献   

12.
Reverse water‐level fluctuations have been widely observed in aquitards or aquifers separated from a pumped confined aquifer (Noordbergum effect) immediately after the initiation of pumping. This same reverse fluctuation has been observed in a fractured crystalline‐rock aquifer at the Coles Hill uranium site in Virginia in which the reverse water‐level response occurs within a pumped fracture and results from an instantaneous strain response to pumping that precedes the pore‐pressure response in observation wells of sufficient distance from the pumped well. This response is referred to as the Mandel‐Cryer effect. The unique aspect of this water level rise during a controlled 24 h pumping test was that the reverse water levels lasted for approximately 100 min and reached a magnitude of nearly 1 cm prior to a typical drawdown response. The duration and magnitude of the response reflects the poromechanical properties of the fractured host rock and hydraulic properties of the pumped fracture. An axisymmetric flow and deformation model were developed using Biot2 in an effort to simulate the observed water‐level response along an assumed 0.5 to 1.0 cm aperture horizontal fracture 176 m from the pumping well and to identify the importance of the poroelastic effect. Results indicate that traditional aquifer‐testing methods that ignore the poromechanical response are not significantly different than results that include the response. However, the poroelastic effect allows for more accurate and efficient parameter calibration.  相似文献   

13.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

14.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

15.
Determining aquifer type, unconfined, semi‐confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost‐effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low‐porosity aquifers. Water‐level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water‐level fluctuations of a thick (~1000 m) carbonate aquifer located in south‐central Oklahoma (Arbuckle‐Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric‐pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low‐cost method to determine aquifer type.  相似文献   

16.
The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well‐face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.  相似文献   

17.
Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer’s permeability (semi-permeable and impermeable), of the boundary condition at the aquifer’s submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.  相似文献   

18.
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.  相似文献   

19.
Halford KJ  Yobbi D 《Ground water》2006,44(2):284-291
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.  相似文献   

20.
We developed a method to estimate aquifer transmissivity from the hydraulic-head data associated with the normal cyclic operation of a water supply well thus avoiding the need for interrupting the water supply associated with a traditional aquifer test. The method is based on an analytical solution that relates the aquifer's transmissivity to the standard deviation of the hydraulic-head fluctuations in one or more observation wells that are due to the periodic pumping of the production well. We analyzed the resulting analytical solution and demonstrated that when the observation wells are located near the pumping well, the solution has a simple, Dupuit like form. Numerical analysis demonstrates that the analytical solution can also be used for a quasi-periodic pumping of the supply well. Simulation of cyclic pumping in a statistically heterogeneous medium confirms that the method is suitable for analyzing the transmissivity of weakly or moderately heterogeneous aquifers. If only one observation well is available, and the shift in the phase of hydraulic-head oscillations between the pumping well and the observation well is not identifiable. Prior knowledge of aquifer's hydraulic diffusivity is required to obtain the value of the aquifer transmissivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号