首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用Y/Ho比值指示俄罗斯乌拉尔南部晶质菱镁矿矿床的成因   总被引:1,自引:1,他引:1  
乌拉尔省南部赋存有两种类型的晶质菱镁矿:1)白云岩地层中的层状矿体;2)白云质灰岩中的透镜状矿体。晶质菱镁矿矿体位于Riphean系列中下层的白云岩中,而在上层的白云岩单元中缺失。这两种类型的菱镁矿可通过矿体形态、晶体大小、石英和白云石含量不同来进行区分。第一种类型的菱镁矿储量巨大,菱镁矿呈粗粒结构,晶体粒径>10mm(最大达150mm);一般来说,矿体与白云岩围岩界限清楚,这种类型矿床以产在Riphean序列下部为特征。第二种类型的菱镁矿由于菱镁矿矿体穿插进入到白云岩围岩中,矿体很不规则,菱镁矿晶体也相对较小(1-5mm),这种类型的矿体主要产在Riphean中部层位中。这两种矿体都显示了交代成因的特征。但这两种菱镁矿矿石在一些主量元素和稀土元素的分布上具有不同的特征:与第二种类型相比,第一种菱镁矿具有较低的FeO,CaO和SiO2含量,与白云岩围岩(La/Lu>1)相比,具La/Lu<1的轻稀土亏损特征。第二种菱镁矿稀土分馏度较低,在稀土分配方面与白云岩围岩有差别。本文还特别讨论了Y/Ho值的重要性,因为该比值在菱镁矿和围岩中的类似性使得划分菱镁矿形成中的热液和成岩交代过程成为可能。因此我们认为,第一种类型菱镁矿,如具有高Y/Ho比值的Satka和Bakal矿床的形成属于沉积盆地发育过程中的早期成岩阶段;第  相似文献   

2.
For the first time, the age of magnesite in the Lower Riphean Bakal Formation of the Southern Urals is determined by the U—Pb (Pb—Pb) method: it is equal to 1366 ± 47 Ma (MSWD = 18). The stage of magnesite formation of the Bakal ore field was associated with the Mashak rifting pulse and took place prior to the formation of industrial deposits of the Bakal siderite.  相似文献   

3.
Three stratificated levels of magnesite-bearing dolomites—Lower Riphean (Bakal-Satka-Suran), Middle Riphean (Avzyan), and Upper Riphean (Min’yar)—are recognized in the Riphean section of the Bashkir Anticlinorium of the southern Urals. Dolomites contain submicroscopic (~1 μm) magnesite dissemination (MgO/CaO > 0.714). The Lower and Middle Riphean magnesite-bearing dolomites host metasomatic magnesite stocks, lenses, pockets, and large stratiform lodes formed as products of hydrothermal activity. No metasomatic magnesite bodies are known in areas without indications of the hydrothermal reworking of magnesite-bearing dolomites. Magnesite deposits of the southern Urals are typical elisional-hydrothermal products related to sedimentation and lithogenesis of carbonate rocks in isochemical system of sedimentary basin. Juvenile components did not participate in the formation of magnesite deposits in the southern Urals.  相似文献   

4.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   

5.
The Rb-Sr and U-Pb systematics were studied for carbonate rocks of the Lower Riphean Bakal Formation of the southern Urals and related siderite ores of the Bakal iron deposit. The least-altered limestones taken at a significant distance from the Bakal ore field satisfy the strict geochemical criteria of retentivity: Mn/Sr < 0.2, Fe/Sr < 0.5, and 87Sr/86Sr (difference between the measured 87Sr/86Sr values in secondary and primary carbonate phases) < 0.001. The least-altered carbonate phases were extracted by the stepwise dissolution in 0.5 N HBr. The Pb-Pb date of limestones (1430 ± 30 Ma) defines the age of early diagenesis of carbonate sediments of the Bakal Formation. The 87Sr/86Sr ratio in the sedimentary environment of the Bakal carbonates (0.70457–0.70481) yields isotopic signature for the Early Riphean seawater. The Pb-Pb age of metasomatic siderites (1010 ± 100 Ma), which formed at the end of the main ore formation stage and did not undergo late epigenesis, corresponds to the final phases of the Grenville tectonogenesis. Siderites of the main ore formation stage are confined to central parts of the thickest carbonate units and have high ratios of 87Sr/86Sr (0.73482–0.73876) and 208Pb/204Pb (41.4–42.9). Iron-bearing solutions formed during the diagenesis of mainly Lower Riphean clayey rocks and migrated along low-density zones and faults. The solutions discharged at the interformational unconformity between the Bakal and Zigalga formations. At the contact with shales, carbonate rocks and siderites experienced the later epigenetic dolomitization (partial desideritization) caused by the circulation of solutions enriched in radiogenic 87Sr and low-radiogenic 206Pb. This dolomitization occurred simultaneously with the Cadomian tectonothermal activation of the region.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 227–249.Original Russian Text Copyright © 2005 by Kuznetsov, Krupenin, Ovchinnikova, Gorokhov, Maslov, Kaurova, Ellmies.  相似文献   

6.
中—新元古代地层在南乌拉尔海槽中极为发育,地层厚度巨大,几个阶段的构造演化和沉积特征清晰可见。新太古代和下里菲是俄罗斯重要的大型层状铁矿和菱镁矿的宿主地层,中里菲群(元古宙地层)地层厚度极大,伴随了几次沉积旋回,发育了从深海相到大陆缓坡的碳酸盐岩沉积;随着新元古代末次冰期之后,文德系发育了可全球对比的白海动物群(伊迪卡拉动物群)。笔者首次确认了南乌拉尔地区中—新元古代地层3套臼齿构造,其中巴卡尔组(Bakal)碳酸盐岩臼齿构造与碎屑岩地震液化脉互层共生,特别是大量臼齿构造也发育在大型叠层石中。从臼齿构造与碎屑岩液化脉互层的共生特征,说明发育在碳酸盐岩中臼齿构造与地震机理的液化作用有关。该3套臼齿构造与中国华北地台中—新元古代地层中发现的臼齿构造(液化脉)时代大体接近。  相似文献   

7.
Before our studies, it was considered that the Bagrusha rhyolite–porphyry complex (BC) including veins and thin dykes occurring in the Kusa region among deposits presumably of the Satka and Avzyan Formations of the Lower and Middle Riphean, respectively. Based on the U–Pb SHRIMP and IDTIMS studies of zircons from rhyodacite—porphyry, we established the age of the BC formation of T0 = 1348.6 ± 3.2 Ma for the first time. The age obtained is inconsistent with the idea on the Paleozoic age of the BC and the geological situation shown on geological maps of the region. The age (T0 = 1348.6 ± 3.2 Ma) of rhyodacite–porphyry from the BC provides evidence for acid volcanism controlled by the Mashak (Middle Riphean) magmatic event in the region, and deposits hosting volcanic rocks of the BC cannot be younger than the base of the Middle Riphean, i.e., the Mashak Formation, which was not previously distinguished by researchers in the western part of the Kusa and Bakal–Satka regions. At the same time, it is possible that deposits hosting dykes and veins of the granite–rhyolite formation may have a Bakal (Lower Riphean) age.  相似文献   

8.
The metasomatic nature of magnesite formation, sequence and timing of geological processes, and solution sources have been established by comprehensive geological and geochemical study of the typical Satka and Ismakaevo deposits of sparry magnesite in the South Ural province. The hydrothermal metasomatic formation of magnesite is related to injection of high-Mg evaporite brine into heated carbonate rocks within permeable rift zones. The numerical physicochemical simulation of solution–rock interaction allowed us to determine the necessary prerequisites for sparry magnesite formation: the occurrence of marine salt solutions with a high Mg/Ca ratio and heating of solutions before or during their interaction with host carbonate rocks. The contribution of compositionally various solution sources, the temperature variation regime, proportions of CO2 and H2S concentrations in solution created specific features of particular deposits.  相似文献   

9.
It is shown that siderite is unstable during sedimentation, diagenesis, and metamorphism of sedimentary and volcanosedimentary rocks. Regularities in the distribution of siderite in Precambrian jaspilites (iron formations), metasomatic ores of the Bakal type, continental–marine coaliferous formations, and oolitic iron ores are discussed. The genesis of the Precambrian iron formations and Riphean–Lower Paleozoic elisional–hydrothermal deposits is considered. The genetic relation of nodular siderites from coaliferous formations and oolitic iron ores with lowmoor coal-forming peat deposits is noted.  相似文献   

10.
The mineral composition and U-Pb and Rb-Sr systematics of phosphorites from the Satka Formation of Lower Riphean carbonates, the Burzyan Group of Southern Urals, are studied. Phosphorites occurring as small lenses between stromatolite layers are composed largely of fluorapatite with admixture of detrital quartz, feldspars, illite, and chlorite. Phosphorite samples have been subjected to stepwise dissolution in 1 N (fraction L-1) and 2 N (fraction L-2) HCl. As is established, the maximum apatite content is characteristic of fraction L-1, while fraction L-2 is enriched in products of dolomite and sulfide dissolution and in elements leached from siliciclastic components. The Sr content in the Satka apatites (280–560 ppm) is substantially lower as compared with that in unaltered marine apatite. The 87Sr/86Sr “initial ratio in the phosphorites studied (0.71705–0.72484) and host dolomites from the lower part of the Satka Formation is significantly higher than in the Early Riphean seawater that indicates a reset of the Rb-Sr original systems in sediments. The Pb-Pb age of 1340 ± 30 Ma (MSWD = 6.4) estimated based on 7 data points characterizing fractions L-1 and L-2 is younger than the formation time of overlying Burzyan sediments, being consistent, within the error range, with date of the Mashak rifting event recorded at the Early-Middle Riphean boundary. The comparative U-Pb characteristics of two soluble fractions (L-1 and L-2) and silicate residue of phosphorites show that epigenetic redistribution of Pb and U was characteristic of the phosphorite horizon only. The initial Pb isotope composition and μ (238U/204Pb) estimated according to model by Stacey and Kramers for the early diagenetic fluids in carbonate and phosphate sediments of the Satka Formation suggest that they were in isotopic equilibrium with erosion products of the Taratash crystalline complex.  相似文献   

11.
The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite–sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal–metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245°C) then for siderite vein (around 185°C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal–metasomatic origin of the Ljubija iron deposits.  相似文献   

12.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

13.
邱柱国 《矿床地质》1987,6(1):68-78
沉积矿床的形成过程,可明确地划分为同生作用、成岩作用与后生作用等三个矿化阶段。现在所见到的沉积矿床,主要是最后矿化阶段改造的结果。根据沉积矿床所经历矿化阶段的不同和表现强度的不同,作者将沉积矿床划分为四种成因亚类:(1)沉积同生矿床;(2)沉积成岩矿床;(3)沉积成岩-后生矿床;(4)沉积后生矿床。产于沉积岩和沉积矿床中的青灰色微细均粒菱铁矿系成岩作用形成,米黄色或淡黄色的粗至巨粒的成分较纯的菱铁矿系后生作用形成。它们都不是同生作用形成的。  相似文献   

14.

The stable enrichment of pyrite from magnesite ores in δ34S isotope (from 5.4 to 6.9‰) compared with pyrite from the host (sedimentary and igneous) rocks was established in the classical Satka sparry magnesite ore field. Concretionary segregations of fine-grained pyrite in dolomite are depleted in the heavy sulfur isotope (δ34S, from–9.1 to–5.8‰). Pyrite from dolerite is characterized by δ34S values (–1.1 and 1.7‰) close to the meteorite sulfur. The δ34S values in barite from the underlying dolomite horizon vary in the range of 32.3–41.4‰. The high degree of homogeneity of the sulfur isotope composition in pyrite from magnesite is a result of thermochemical sulfate reduction during the syngenetic crystallization of pyrite and magnesite from epigenetic brines, formed during dissolution of evaporite sulfate minerals at the stage of early catagenesis of the Riphean deposits.

  相似文献   

15.
The formation of the Large Igneous Province (LIP) approximately 1380 Ma old in the South Urals was related to the Mashak riftogenic event in the Bashkir meganticlinorium, which was synchronous with the emplacement of different magmatic bodies (the Berdyaush pluton of rapakivi granites and associated rocks, the Main dike of the Bakal ore field, and the Medvedev, Guben, and Kusa massifs, among others) localized among sedimentary deposits of the Burzyan and Yurmatin Groups representing Lower and Middle Riphean type units of northern Eurasia. The U–Pb ID-TIMS age of 1379.6 Ma (MSWD = 1.3) obtained with an accuracy of ±2.9 Ma (confidence interval 95%) combined with the available published U–Pb ID-TIMS data constrain the age and duration of the Early–Middle Riphean pulse in the LIP formation in the Southern Urals.  相似文献   

16.
The Basin Lakes are two adjacent maar lakes located in the centre of the Western Volcanic Plains District of Victoria, Australia. Both lakes are saline and alkaline; West Basin Lake is meromictic whereas East Basin is a warm monomictic lake. The carbonate mineral suite of the modern offshore bottom sediments of these Basins consists mainly of dolomite and calcite, with smaller amounts of hydromagnesite and magnesite in West Basin and monohydrocalcite in East Basin. The dolomite, hydromagnesite, magnesite, and monohydrocalcite are endogenic in origin, being derived by primary inorganic precipitation within the water columns of the lakes or at the sediment-water interface. The calcite is biologically precipitated as ostracod valves. In addition to the carbonates in the modern offshore (deep-water) sediments, the lakes also contain a girdle of nearshore carbonate hardgrounds. Both beachrock and microbialites (algal boundstones) are present. These modern lithified carbonate units exhibit a wide range of depositional and diagenetic fabrics, morphologies and compositions. In West Basin, the hardgrounds are composed mainly of dolomite, hydromagnesite, and magnesite, whereas dolomite and monohydrocalcite dominate the East Basin sediments. Aragonite, high-Mg calcite, kutnahorite, siderite, and protohydromagnesite also occur in these lithified carbonate units. Stratigraphic variations in the carbonate mineralogy of the Holocene sediment record in the lakes were used to help decipher the palaeochemistry and palaeohydrology of the Basins. These changes, in conjunction with fluctuations in organic remains and fossil content, indicate a pattern of lake level histories similar to that deciphered from other maar lakes in western Victoria.  相似文献   

17.
The Rb-Sr and U-Pb systematics are studied in carbonate deposits of the Satka and Suran formations corresponding to middle horizons of the Lower Riphean Burzyan Group in the Taratash and Yamantau anticlinoria, respectively, the southern Urals. The least altered rock samples retaining the 87Sr/86Sr ratio of sedimentation basin have been selected for analysis using the original method of leaching the secondary carbonate phases and based on strict geochemical criteria of the retentivity (Mn/Sr < 0.2, Fe/Sr < 5 and Mg/Ca < 0.024). The stepwise dissolution in 0.5 N HBr has been used to enrich samples in the primary carbonate phase before the Pb-Pb dating. Three (L-4 to L-6) of seven consecutive carbonate fractions obtained by the step-wise leaching are most enriched in the primary carbonate (in terms of the U-Pb systematics). In the 206Pb/204Pb-207Pb/204Pb diagram, data points of these fractions plot along an isochron determining age of 1550 ± 30 Ma (MSWD = 0.7) for the upper member of the Satka Formation. The initial 87Sr/86Sr ratio in the least altered limestones of this formation is within the range of 0.70460–0.70480. Generalization of the Sr isotopic data published for the Riphean carbonates from different continents showed that 1650–1350 Ma ago the 87Sr/86Sr ratio in the world ocean was low, slightly ranging from 0.70456 to 0.70494 and suggesting the prevalent impact of mantle flux.  相似文献   

18.
Ophicalcites were earlier found in the Lower Devonian olistostromes overlapping cobalt-bearing massive sulfide deposits in the ultramafic rocks of the West Magnitogorsk paleoisland arc. They are composed of angular clastics of serpentinites and carbonates few millimeters to several centimeters in size, which are cemented with hematite-calcite and quartz-hematite-calcite matrix with aragonite, magnesite, and siderite admixtures. In chemical composition Cr-spinels from serpentinites of the ophicalcites are similar to those from the underlying serpentinites and are suprasubduction products of active continental margins. The 13C/12C and 18O/16O ratios of calcite from the breccia matrix are typical of hydrothermal deposits and are close to those of carbonate in sulfide ores and talc-carbonate metasomatites. Study of fluid inclusions from the calcite cement has shown that the ophicalcites formed from low- to moderate-temperature (100–280 °C) hydrothermal fluids as a result of postore hydrothermal emanations on ultramafic seafloor rocks similar to modern hydrothermal fields in MORs and island arcs. Hydrothermal and tectonosedimentation processes in the roof of ultramafic massifs at the vents of hydrothermal fluids led to erosion, redeposition, and cementation of ophicalcites of four types. The subsequent tectonic and gravitational processes resulted in their denudation and accumulation in olistostromes.  相似文献   

19.
The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district).The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times.At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone.In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any remaining carbonate by goethite and magnetite and formation of fibrous quartz and clay minerals.Hypogene alteration of BIF and surrounding country rocks is characterised by: (1) changes in the oxide mineralogy and textures, (2) development of distinct vertical and lateral distal, intermediate and proximal alteration zones defined by distinct oxide–silicate–carbonate assemblages, and (3) mass negative reactions such as de-silicification and de-carbonatisation, which significantly increase the porosity of high-grade iron ore, or lead to volume reduction by textural collapse or layer-compaction. Supergene alteration, up to depths of 200 m, is characterised by leaching of hypogene silica and carbonates, and dissolution precipitation of the iron oxyhydroxides.Carbonates in ore stages 2 and 3 are sourced from external fluids with respect to BIF. In the case of basin-related deposits, carbon is interpreted to be derived from deposits underlying carbonate sequences, whereas in the case of greenstone belt deposits carbonate is interpreted to be of magmatic origin. There is only limited mass balance analyses conducted, but those provide evidence for variable mobilization of Fe and depletion of SiO2. In the high-grade ore zone a volume reduction of up to 25% is observed.Mass balance calculations for proximal alteration zones in mafic wall rocks relative to least altered examples at Beebyn display enrichment in LOI, F, MgO, Ni, Fe2O3total, C, Zn, Cr and P2O5 and depletions of CaO, S, K2O, Rb, Ba, Sr and Na2O. The Y/Ho and Sm/Yb ratios of mineralised BIF at Windarling and Koolyanobbing reflect distinct carbonate generations derived from substantial fluid–rock reactions between hydrothermal fluids and igneous country rocks, and a chemical carbonate-inheritance preserved in supergene goethite.Hypogene and supergene fluids are paramount for the formation of high-grade BIF-hosted iron ore because of the enormous amount of: (1) warm (100–200 °C) silica-undersaturated alkaline fluids necessary to dissolve quartz in BIF, (2) oxidized fluids that cause the oxidation of magnetite to hematite, (3) weakly acid (with moderate CO2 content) to alkaline fluids that are necessary to form widespread metasomatic carbonate, (4) carbonate-undersaturated fluids that dissolve the diagenetic and metasomatic carbonates, and (5) oxidized fluids to form hematite species in the hypogene- and supergene-enriched zone and hydroxides in the supergene zone.Four discrete end-member models for Archean and Proterozoic hypogene and supergene-only BIF hosted iron ore are proposed: (1) granite–greenstone belt hosted, strike-slip fault zone controlled Carajás-type model, sourced by early magmatic (± metamorphic) fluids and ancient “warm” meteoric water; (2) sedimentary basin, normal fault zone controlled Hamersley-type model, sourced by early basinal (± evaporitic) brines and ancient “warm” meteoric water. A variation of the latter is the metamorphosed basin model, where BIF (ore) is significantly metamorphosed and deformed during distinct orogenic events (e.g., deposits in the Quadrilátero Ferrífero and Simandou Range). It is during the orogenic event that the upgrade of BIF to medium- and high-grade hypogene iron took place; (3) sedimentary basin hosted, early graben structure controlled Urucum-type model, where glaciomarine BIF and subsequent diagenesis to very low-grade metamorphism is responsible for variable gangue leaching and hematite mineralisation. All of these hypogene iron ore models do not preclude a stage of supergene modification, including iron hydroxide mineralisation, phosphorous, and additional gangue leaching during substantial weathering in ancient or Recent times; and (4) supergene enriched BIF Capanema-type model, which comprises goethitic iron ore deposits with no evidence for deep hypogene roots. A variation of this model is ancient supergene iron ores of the Sishen-type, where blocks of BIF slumped into underlying karstic carbonate units and subsequently experienced Fe upgrade during deep lateritic weathering.  相似文献   

20.
The first data on the mineral composition and formation conditions of manganese ore at the Chapsordag and Malosyrsky deposits in the Askiz ore district of Khakassia are integrated and systematized. The detailed mineralogical mapping of the deposits has been carried out. The identification of minerals and examination of the ore microstructure were performed with optical microscopy in transmitted and reflected light and using SEM/EDS, EMPA, XRD, IRS, and other methods. It was established that the ore mineralization is spatially and genetically related to the Early Devonian magmatism and accompanying hydrothermal activity and metasomatism. Syngenetic braunite was detected for the first time in elevated amounts reaching an economic level in the devitrified groundmass of volcanic rocks, in cement of lava breccia, and in fragments in pyroclastic rocks. By analogy with iron deposits, this magmatogenic type of manganese mineralization is regarded as ore lavas and tuffs combined with metasomatic and hydrothermal mineral assemblages into a strata-bound orebearing complex and as a source of hydrothermal metasomatic ore. The elevated Mn content in magmatic melts of the Early Devonian trachybasalt-trachyandesite-trachydacite association is caused by assimilation of Riphean and Lower Cambrian high-Mn carbonate sequences in crustal magma chambers. In contours of economic orebodies, the hydrothermal economic ore is recognized as sites of massive, patchy and impregnated, brecciated, stringer-disseminated, and disseminated varieties. High-grade massive ore occurs as stratiform and branching bodies up to 1.5 m thick and a few tens of meters long and as smaller pocketlike bodies. Braunite and pyrolusite (polianite) are major ore minerals varying in size, degree of crystallinity, and character of intergrowths with associating minerals. Gangue minerals include carbonates, sulfates, albite, quartz, chlorite, actinolite, piemontite, and okhotskite, a Mn-pumpellyite identified in Russia for the first time and studied in detail in this paper. The veined hydrothermal ore is classified as a calcite-barite-pyrolusite type. The crystallization temperature of hydrothermal metasomatic ore is estimated at 350–180°C; oxygen fugacity is above the hematite-magnetite buffer. The surface of high-grade ore is encrusted with supergene goethite-hydrogoethite, chalcedony-hematite, and pyrolusite-psilomelane crusts and veinlets (less than 1% of the bulk ore mass). The data obtained facilitate prospecting for high-quality manganese ore at walls of superimposed rifts in fold regions, including large economic manganese concentrations in the form of ore lavas and tuffs as products of solidification of metalliferous melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号