首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology is proposed for constructing a flood forecast model using the adaptive neuro‐fuzzy inference system (ANFIS). This is based on a self‐organizing rule‐base generator, a feedforward network, and fuzzy control arithmetic. Given the rainfall‐runoff patterns, ANFIS could systematically and effectively construct flood forecast models. The precipitation and flow data sets of the Choshui River in central Taiwan are analysed to identify the useful input variables and then the forecasting model can be self‐constructed through ANFIS. The analysis results suggest that the persistent effect and upstream flow information are the key effects for modelling the flood forecast, and the watershed's average rainfall provides further information and enhances the accuracy of the model performance. For the purpose of comparison, the commonly used back‐propagation neural network (BPNN) is also examined. The forecast results demonstrate that ANFIS is superior to the BPNN, and ANFIS can effectively and reliably construct an accurate flood forecast model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

An updating technique is a tool to update the forecasts of mathematical flood forecasting model based on data observed in real time, and is an important element in a flood forecasting model. An error prediction model based on a fuzzy rule-based method was proposed as the updating technique in this work to improve one- to four-hour-ahead flood forecasts by a model that is composed of the grey rainfall model, the grey rainfall—runoff model and the modified Muskingum flow routing model. The coefficient of efficiency with respect to a benchmark is applied to test the applicability of the proposed fuzzy rule-based method. The analysis reveals that the fuzzy rule-based method can improve flood forecasts one to four hours ahead. The proposed updating technique can mitigate the problem of the phase lag in forecast hydrographs, and especially in forecast hydrographs with longer lead times.  相似文献   

3.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper compares artificial neural network (ANN), fuzzy logic (FL) and linear transfer function (LTF)‐based approaches for daily rainfall‐runoff modelling. This study also investigates the potential of Takagi‐Sugeno (TS) fuzzy model and the impact of antecedent soil moisture conditions in the performance of the daily rainfall‐runoff models. Eleven different input vectors under four classes, i.e. (i) rainfall, (ii) rainfall and antecedent moisture content, (iii) rainfall and runoff and (iv) rainfall, runoff and antecedent moisture content are considered for examining the effects of input data vector on rainfall‐runoff modelling. Using the rainfall‐runoff data of the upper Narmada basin, Central India, a suitable modelling technique with appropriate model input structure is suggested on the basis of various model performance indices. The results show that the fuzzy modelling approach is uniformly outperforming the LTF and also always superior to the ANN‐based models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper provides a comparison of gauge and radar precipitation data sources during an extreme hydrological event. November–December 2006 was selected as a time period of intense rainfall and large river flows for the Severn Uplands, an upland catchment in the United Kingdom. A comparison between gauge and radar precipitation time‐series records for the event indicated discrepancies between data sources, particularly in areas of higher elevation. The HEC‐HMS rainfall‐runoff model was selected to assess the accuracy of the precipitation to simulate river flows for the extreme event. Gauge, radar and gauge‐corrected radar rainfall were used as model inputs. Universal cokriging was used to geostatistically interpolate gauge data with radar and elevation data as covariates. This interpolated layer was used to calculate the mean‐field bias and correct the radar composites. Results indicated that gauge‐ and gauge‐corrected radar‐driven models replicated flows adequately for the extreme event. Gauge‐corrected flow predictions produced an increase in flow prediction accuracy when compared with the raw radar, yet predictions were comparative in accuracy to those using the interpolated gauge network. Subsequent investigations suggested this was due to an adequate spatial and temporal resolution of the precipitation gauge network within the Severn Uplands. Results suggested that the six rain gauges could adequately represent precipitation variability of the Severn Uplands to predict flows at an approximately equal accuracy to that obtained by radar. Temporally, radar produced an increase in flow prediction accuracy in mountainous reaches once the gauge time step was in excessive of an hourly interval. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Rainfall–runoff models are widely used to predict flows using observed (instrumental) time series of air temperature and precipitation as inputs. Poor model performance is often associated with difficulties in estimating catchment‐scale meteorological variables from point observations. Readily available gridded climate products are an underutilized source of temperature and precipitation time series for rainfall–runoff modelling, which may overcome some of the performance issues associated with poor‐quality instrumental data in small headwater monitoring catchments. Here we compare the performance of instrumental measured and E‐OBS gridded temperature and precipitation time series as inputs in the rainfall–runoff models “PERSiST” and “HBV” for flow prediction in six small Swedish catchments. For both models and most catchments, the gridded data produced statistically better simulations than did those obtained using instrumental measurements. Despite the high correspondence between instrumental and gridded temperature, both temperature and precipitation were responsible for the difference. We conclude that (a) gridded climate products such as the E‐OBS dataset could be more widely used as alternative input to rainfall–runoff models, even when instrumental measurements are available, and (b) the processing applied to gridded climate products appears to provide a more realistic approximation of small catchment‐scale temperature and precipitation patterns needed for flow simulations. Further research on this issue is needed and encouraged.  相似文献   

7.
Fuzzy theory appears to be extremely effective at handling dynamic, non‐linear and noisy data, especially when the underlying physical relationships are not fully understood. Since hydrologists are still uncertain about many of the aspects of the physical processes in the watershed, fuzzy theory has proved to be a very attractive tool enabling them to investigate such problems. The effectiveness of the fuzzy model lies in the identification of the antecedent membership function (MF), which is generally addressed through a fuzzy clustering approach. Most of the applications of fuzzy computing in hydrology seem to have selected the clustering algorithm quite arbitrarily. However, it is apparent that, as the antecedent parameters are based solely on the identified clusters, the method used for clustering should certainly have an impact on the overall performance of the model. This paper presents the results of a study conducted to investigate the impact of choice of clustering algorithm on the overall performance of a fuzzy‐based hydrologic model. The research is illustrated through a case study of developing a Takagi–Sugeno fuzzy model for reservoir inflow forecasting in the Narmada basin, India. The model was developed using two popular clustering techniques, namely Gustafson–Kessel (GK) and subtractive clustering (SC), and was extensively evaluated for performance based on various statistical indices. The results show that the model performance is comparable at a 1 h lead forecast. However, it is observed that the GK approach results in a better performance than the SC approach in computing forecasts at higher lead times. The analysis suggest that the GK method clusters the input space based on the actual pattern, since it uses a membership‐grade weighted‐distance measure as the measure of closeness, whereas the SC method classifies the input space more logically according to the magnitude of flow available in the data set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In many engineering problems, such as flood warning systems, accurate multistep‐ahead prediction is critically important. The main purpose of this study was to derive an algorithm for two‐step‐ahead forecasting based on a real‐time recurrent learning (RTRL) neural network that has been demonstrated as best suited for real‐time application in various problems. To evaluate the properties of the developed two‐step‐ahead RTRL algorithm, we first compared its predictive ability with least‐square estimated autoregressive moving average with exogenous inputs (ARMAX) models on several synthetic time‐series. Our results demonstrate that the developed two‐step‐ahead RTRL network has efficient ability to learn and has comparable accuracy for time‐series prediction as the refitted ARMAX models. We then investigated the two‐step‐ahead RTRL network by using the rainfall–runoff data of the Da‐Chia River in Taiwan. The results show that the developed algorithm can be successfully applied with high accuracy for two‐step‐ahead real‐time stream‐flow forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Despite human is an increasingly significant component of the hydrologic cycle in many river basins, most hydrologic models are still developed to accurately reproduce the natural processes and ignore the effect of human activities on the watershed response. This results in non‐stationary model forecast errors and poor predicting performance every time these models are used in non‐pristine watersheds. In the last decade, the representation of human activities in hydrological models has been extensively studied. However, mathematical models integrating the human and the natural dimension are not very common in hydrological applications and nearly unknown in the day‐to‐day practice. In this paper, we propose a new simple data‐driven flow forecast correction method that can be used to simultaneously tackle forecast errors from structural, parameter and input uncertainty, and errors that arise from neglecting human‐induced alterations in conceptual rainfall–runoff models. The correction system is composed of two layers: (i) a classification system that, based on the current flow condition, detects whether the source of error is natural or human induced and (ii) a set of error correction models that are alternatively activated, each tailored to the specific source of errors. As a case study, we consider the highly anthropized Aniene river basin in Italy, where a flow forecasting system is being established to support the operation of a hydropower dam. Results show that, even by using very basic methods, namely if‐then classification rules and linear correction models, the proposed methodology considerably improves the forecasting capability of the original hydrological model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The major purpose of this study is to effectively construct artificial neural networks‐based multistep ahead flood forecasting by using hydrometeorological and numerical weather prediction (NWP) information. To achieve this goal, we first compare three mean areal precipitation forecasts: radar/NWP multisource‐derived forecasts (Pr), NWP precipitation forecasts (Pn), and improved precipitation forecasts (Pm) by merging Pr and Pn. The analysis shows that the accuracy of Pm is higher than that of Pr and Pn. The analysis also indicates that the NWP precipitation forecasts do provide relative effectiveness to the merging procedure, particularly for forecast lead time of 4–6 h. In sum, the merged products performed well and captured the main tendency of rainfall pattern. Subsequently, a recurrent neural network (RNN)‐based multistep ahead flood forecasting techniques is produced by feeding in the merged precipitation. The evaluation of 1–6‐h flood forecasting schemes strongly shows that the proposed hydrological model provides accurate and stable flood forecasts in comparison with a conventional case, and significantly improves the peak flow forecasts and the time‐lag problem. An important finding is the hydrologic model responses which do not seem to be sensitive to precipitation predictions in lead times of 1–3 h, whereas the runoff forecasts are highly dependent on predicted precipitation information for longer lead times (4–6 h). Overall, the results demonstrate that accurate and consistent multistep ahead flood forecasting can be obtained by integrating predicted precipitation information into ANNs modelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The first step towards developing a reliable seasonal runoff forecast is identifying the key predictors that drive rainfall and runoff. This paper investigates the lag relationships between rainfall across Australia and runoff across southeast Australia versus 12 atmospheric‐oceanic predictors, and how the relationships change over time. The analysis of rainfall data indicates that the relationship is greatest in spring and summer in northeast Australia and in spring in southeast Australia. The best predictors for spring rainfall in eastern Australia are NINO4 [sea surface temperature (SST) in western Pacific] and thermocline (20 °C isotherm of the Pacific) and those for summer rainfall in northeast Australia are NINO4 and Southern Oscillation Index (SOI) (pressure difference between Tahiti and Darwin). The relationship in northern Australia is greatest in spring and autumn with NINO4 being the best predictor. In western Australia, the relationship is significant in summer, where SST2 (SST over the Indian Ocean) and II (SST over the Indonesian region) is the best predictor in the southwest and northwest, respectively. The analysis of runoff across southeast Australia indicates that the runoff predictability in the southern parts is greatest in winter and spring, with antecedent runoff being the best predictor. The relationship between spring runoff and NINO4, thermocline and SOI is also relatively high and can be used together with antecedent runoff to forecast spring runoff. In the northern parts of southeast Australia, the atmospheric‐oceanic variables are better predictors of runoff than antecedent runoff, and have significant correlation with winter, spring and summer runoff. For longer lead times, the runoff serial correlation is reduced, especially over the northern parts, and the atmospheric‐oceanic variables are likely to be better predictors for forecasting runoff. The correlations between runoff versus the predictors vary with time, and this has implications for the development of forecast relationship that assumes stationarity in the historical data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
针对降雨输入不确定性对实时洪水预报影响的问题,本文采用不考虑未来预报降雨、考虑未来预报降雨、考虑预报降雨的降雨量误差和降雨时间误差4种方法,以陕西省两个半湿润流域(陈河流域和大河坝流域)为研究区域,分析不同预见期和不同降雨输入情况下洪水预报的精度.研究表明:相对于不考虑未来降雨情况,考虑未来降雨后在预报预见期较长时对预报结果精度提升较大,在预见期较短时对预报结果精度提升不显著;暴雨中心位置不同对预报精度影响也不同,当暴雨中心位于流域下游时降雨量误差对流量预报误差影响更大;降雨量误差主要影响洪量相对误差和洪峰相对误差,且这种影响是线性的,对确定性系数的影响是非线性的二次函数,降雨时间误差主要影响峰现时间误差.  相似文献   

14.
Distributed hydrological modelling using space–time estimates of rainfall from weather radar provides a natural approach to area-wide flood forecasting and warning at any location, whether gauged or ungauged. However, radar estimates of rainfall may lack consistent, quantitative accuracy. Also, the formulation of hydrological models in distributed form may be problematic due to process complexity and scaling issues. Here, the aim is to first explore ways of improving radar rainfall accuracy through combination with raingauge network data via integrated multiquadric methods. When the resulting gridded rainfall estimates are employed as input to hydrological models, the simulated river flows show marked improvements when compared to using radar data alone. Secondly, simple forms of physical–conceptual distributed hydrological model are considered, capable of exploiting spatial datasets on topography and, where necessary, land-cover, soil and geology properties. The simplest Grid-to-Grid model uses only digital terrain data to delineate flow pathways and to control runoff production, the latter by invoking a probability-distributed relation linking terrain slope to soil absorption capacity. Model performance is assessed over nested river basins in northwest England, employing a lumped model as a reference. When the distributed model is used with the gridded radar-based rainfall estimators, it shows particular benefits for forecasting at ungauged locations.  相似文献   

15.
Though forecasting of river flow has received a great deal of attention from engineers and researchers throughout the world, this still continues to be a challenging task owing to the complexity of the process. In the last decade or so, artificial neural networks (ANNs) have been widely applied, and their ability to model complex phenomena has been clearly demonstrated. However, the success of ANNs depends very crucially on having representative records of sufficient length. Further, the forecast accuracy decreases rapidly with an increase in the forecast horizon. In this study, the use of the Darwinian theory‐based recent evolutionary technique of genetic programming (GP) is suggested to forecast fortnightly flow up to 4‐lead. It is demonstrated that short lead predictions can be significantly improved from a short and noisy time series if the stochastic (noise) component is appropriately filtered out. The deterministic component can then be easily modelled. Further, only the immediate antecedent exogenous and/or non‐exogenous inputs can be assumed to control the process. With an increase in the forecast horizon, the stochastic components also play an important role in the forecast, besides the inherent difficulty in ascertaining the appropriate input variables which can be assumed to govern the underlying process. GP is found to be an efficient tool to identify the most appropriate input variables to achieve reasonable prediction accuracy for higher lead‐period forecasts. A comparison with ANNs suggests that though there is no significant difference in the prediction accuracy, GP does offer some unique advantages. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

17.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
《水文科学杂志》2013,58(4):567-584
Abstract

Reliable, real-time river flow forecasting in Africa on a time scale of days can provide enormous humanitarian and economic benefits. This study investigates the feasibility of using daily rainfall estimates based on cold cloud duration (CCD) derived from Meteosat thermal infrared imagery as input to a simple rainfall—runoff model and also whether such estimates can be improved by the inclusion of information from numerical weather prediction (NWP) analysis models. The Bakoye catchment in Mali, West Africa has been used as a test area. The data available for the study covered the main months of the rainy season for three years. The rainfall estimates were initially validated against gauge data. Improvements in quality were observed when information relating to African Easterly Wave phase and storm type was included in a multiple linear regression (MR) algorithm. The estimates were also tested by using them as input to a rainfall—runoff model. When contemporaneous calibrations from raingauges were available for calibration, both CCD-only and MR rainfall estimates gave more accurate river flow forecasts than when using raingauge data alone. In the absence of contemporaneous calibrations, the performance was reduced but the MR did better than the CCDonly input in all years. The use of satellite-derived vegetation index did not improve the quality of the river flow forecasts.  相似文献   

19.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Forecasting river flow is important to water resources management and planning. In this study, an artificial neural network (ANN) model was successfully developed to forecast river flow in Apalachicola River. The model used a feed‐forward, back‐propagation network structure with an optimized conjugated training algorithm. Using long‐term observations of rainfall and river flow during 1939–2000, the ANN model was satisfactorily trained and verified. Model predictions of river flow match well with the observations. The correlation coefficients between forecasting and observation for daily, monthly, quarterly and yearly flow forecasting are 0·98, 0·95, 0·91 and 0·83, respectively. Results of the forecasted flow rates from the ANN model were compared with those from a traditional autoregressive integrated moving average (ARIMA) forecasting model. Results indicate that the ANN model provides better accuracy in forecasting river flow than does the ARIMA model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号