首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, attempts are made to investigate the effects of inertial soil–structure interaction (SSI) on damping coefficients subjected to pulse-like near-fault ground motions. To this end, a suit of 91 pulse-like near-fault ground motions is adopted. The soil and superstructure are idealized employing cone model and single-degree-of-freedom (SDOF) oscillator, respectively. The results demonstrate that soil flexibility reduces and amplifies the damping coefficients for structural viscous damping levels higher and lower than 5%, respectively. The coefficients reach one for both acceleration and displacement responses in cases of dominant SSI effects. The effect of structure dimensions on damping confidents are found insignificant. Moreover, damping coefficients of displacement responses are higher than those of acceleration responses for both fixed-base and flexible-base systems. Evaluation of damping correction factor introduced by FEMA 440 shows its inefficiency to predict acceleration response of soil–structure systems under pulse-like near-fault ground motions. Soil flexibility makes the damping correction factor of moderate earthquakes more pronounced and a distinctive peak value is reported for cases with dominant SSI effects.  相似文献   

2.
The concept of equivalent linearization, in which the actual nonlinear structure is replaced by an equivalent linear single-degree-of-freedom (SDOF) system, is extended for soil-structure systems in order to consider the simultaneous effects of soil-structure interaction (SSI) and inelastic behavior of the structure on equivalent linear parameters (ELP). This is carried out by searching over a two-dimensional equivalent period–equivalent damping space for the best pair, which can predict the earthquake response of the inelastic soil-structure system with sufficient accuracy. The super-structure is modeled as an elasto-plastic SDOF system whereas the soil beneath the structure is considered as a homogeneous half-space and is replaced by a discrete model. An extensive parametric study is carried out for a wide range of soil-structure systems subjected to a suite of 59 ground motions. The effect of SSI on ELP is studied through introducing a set of non-dimensional key parameters, which define the soil-structure system. It is shown that ELP of soil-structure systems result from a trade-off between SSI effect and nonlinear behavior of the structure. The contribution of each of these two factors depends on the characteristics of the soil-structure system which, in turn, are defined by the introduced non-dimensional key parameters. Moreover, the reliability of the predicted response of soil-structure systems and its sensitivity to deviation from optimal ELP is studied in detail, which sheds light on the consequences of using improper pairs of ELP for interacting systems in the framework of performance-based design of structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Evaluation of FEMA-440 for including soil-structure interaction   总被引:1,自引:1,他引:0  
Replacing the entire soil-structure system with a fixed base oscillator to consider the effect of soil-structure interaction (SSI) is a common analysis method in seismic design. This technique has been included in design procedures such as NEHRP, ASCE, etc. by defining an equivalent fundamental period and damping ratio that can modify the response of the structure. However, recent studies indicate that the effects of SSI should be reconsidered when a structure undergoes a nonlinear displacement demand. In recent documents on Nonlinear Static Procedures (NSPs), FEMA-440 (2005), a modified damping ratio of the replacement oscillator was proposed by introducing the ductility of the soil-structure system obtained from pushover analysis. In this paper, the damping defined in FEMA-440 to include the soil-structure interaction effect is evaluated, and the accuracy of the Coefficient Method given in FEMA-440 and the Equivalent Linearization Method is studied. Although the improvements for Nonlinear Static Procedures (NSPs) in FEMA-440 are achieved for a fixed base SDOF structure, the soil effects are not perfectly obtained. Furthermore, the damping definition of a soil-structure system is extended to structures to consider bilinear behavior.  相似文献   

4.
To simplify the consideration of the soil-structure interaction (SSI) effects, a single degree-of-freedom (SDOF) replacement oscillator has been successfully utilized to represent an SSI system with SDOF structural model. In the present paper, this approximation is first extended to an equivalent fixed-base model with modified system parameters. Based on this generalization, a methodology is then proposed to determine the equivalent fixed-base models of a general multi degree-of-freedom SSI system using simple system identification techniques in the frequency domain. Various fixed-base models are formulated and their accuracy is compared for a five-story shear building resting on soft soil. It is shown that the actual SSI system can be accurately represented with an appropriate fixed-base model.  相似文献   

5.
In this study, simplified numerical models are developed to analyze the soil-structure interaction (SSI) effect on frame structures equipped with viscoelastic dampers (VEDs) based on pile group foundation. First, a single degree-of-freedom (SDOF) oscillator is successfully utilized to replace the SDOF energy dissipated structure considering the SSI effect. The equivalent period and damping ratio of the system are obtained through analogical analysis using the frequency transfer function with adoption of the modal strain energy (MSE) technique. A parametric analysis is carried out to study the SSI effect on the performance of VEDs. Then the equilibrium equations of the multi degree-of-freedom (MDOF) structure with VEDs considering SSI effect are established in the frequency domain. Based on the assumption that the superstructure of the coupled system possesses the classical normal mode, the MDOF superstructure is decoupled to a set of individual SDOF systems resting on a rigid foundation with adoption of the MSE technique through formula derivation. Numerical results demonstrate that the proposed methods have the advantage of reducing computational cost, however, retaining the satisfactory accuracy. The numerical method proposed herein can provide a fast evaluation of the efficiency of VEDs considering the SSI effect.  相似文献   

6.
This paper introduces a simple method to consider the effects of inertial soil–structure interaction (SSI) on the seismic demands of a yielding single‐degree‐of‐freedom structure. This involves idealizing the yielding soil–structure system as an effective substitute oscillator having a modified period, damping ratio, and ductility. A parametric study is conducted to obtain the ratio between the displacement ductility demand of a flexible‐base system and that of the corresponding fixed‐base system. It is shown that while additional foundation damping can reduce the overall response, the effects of SSI may also increase the ductility demand of some structures, mostly being ductile and having large structural aspect ratio, up to 15%. Finally, a design procedure is provided for incorporation of the SSI effects on structural response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of soil‐structure interaction (SSI) are often studied using two‐dimensional (2D) or axisymmetric three‐dimensional (3D) models to avoid the high cost of the more realistic, fully 3D models, which require 2 to 3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed using impedances for linear in‐plane 2D models with rectangular foundations, embedded in uniform or layered half‐space. They are computed by comparison with results for 3D rectangular foundations with the same vertical cross‐section and different aspect ratios. The structure is represented by a single degree‐of‐freedom oscillator. Correction factors are presented for a range of the model parameters. The results show that in‐plane 2D approximations overestimate the SSI effects, exaggerating the frequency shift, the radiation damping, and the reduction of the peak amplitude. The errors are larger for stiffer, taller, and heavier structures, deeper foundations, and deeper soil layer. For example, for a stiff structure like Millikan library (NS response; length‐to‐width ratio ≈ 1), the error is 6.5% in system frequency, 44% in system damping, and 140% in peak amplitude. The antiplane 2D approximation has an opposite effect on system frequency and the same effect on system damping and peak relative response. Linear response analysis of a case study shows that the NEHRP‐2015 provisions for reduction of base shear force due to SSI may be unsafe for some structures. The presented correction factor diagrams can be used in practical design and other applications.  相似文献   

8.
Inelastic displacement ratios (IDRs) of nonlinear soil–structure interaction (SSI) systems located at sites with cohesive soils are investigated in this study. To capture the effects of inelastic cyclic behavior of the supporting soil, the Beam on Nonlinear Winkler Foundation (BNWF) model is used. The superstructure is modeled using an inelastic single-degree-of-freedom (SDOF) system model. Nonlinear SSI systems representing various combinations of unconfined compressive strengths and shear wave velocities are considered in the analysis. A set of strong ground motions recorded at sites with soft to stiff soils is used for considering the record-to-record variability of IDRs. It is observed that IDRs for nonlinear SSI systems are sensitive to the strength and the stiffness properties of both the soil and the structure. For the case of SSI systems on the top of cohesive soils, the compressive strength of the soil has a significant impact on the IDRs, which cannot be captured by considering only the shear wave velocity of the soil. Based on the results of nonlinear time-history analysis, a new equation is proposed for estimating the mean and the dispersion of IDRs of SSI systems depending on the characteristic properties of the supporting soil, dimensions of the foundation, and properties of the superstructure. A probabilistic framework is presented for the performance-based seismic design of SSI systems located at sites with cohesive soils.  相似文献   

9.
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soilstructure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify theSSI effect on the seismic performance ofTMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.  相似文献   

10.
A simple procedure for identifying hysteretic properties of seismically isolated bridges from full‐scale quick‐release tests is presented in this paper. An analytical solution for the quick‐release response of a SDOF system with a bilinear spring is derived. Based on the solution, some characteristics of such systems are obtained. A time domain optimization method is employed to identify the hysteretic properties of the lead–rubber bearings installed in seismically isolated bridges. The total damping effects of the isolation system are expressed as a combination of the rate‐independent (hysteretic) damping and the linear viscous damping. The Menegotto–Pinto (MP) model and bilinear model are used to represent the force–displacement relation of the lead–rubber bearings. In both the longitudinal and transverse directions the bridges have been idealized as single degree of freedom (SDOF) systems. Time histories recorded from the field quick‐release tests on two bridges are used for the examples presented herein. The hysteretic loops of the isolators obtained from laboratory tests are compared with those obtained using the optimization method, and they agree well. In conclusion, the procedure shown in this paper can be used to identify the essential in situ hysteretic characteristics of isolation bearings from quick‐release field testing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Offshore wind turbine (OWT) is a typical example of a slender engineering structure founded on large diameter rigid piles (monopiles). The natural vibration characteristics of these structures are of primary interest since the dominant loading conditions are dynamic. A rigorous analytical solution of the modified SSI eigenfrequency and damping is presented, which accounts for the cross coupling stiffness and damping terms of the soil–pile system and is applicable but not restrictive to OWTs. A parametric study was performed to illustrate the sensitivity of the eigenfrequency and damping on the foundation properties, the latter being expressed using the notion of dimensionless parameters (slenderness ratio and flexibility factor). The application of the approximate solution that disregards the off diagonal terms of the dynamic impedance matrix was found to overestimate the eigenfrequency and underestimate the damping. The modified SSI eigenfrequency and damping was mostly affected by the soil–pile properties, when the structural eigenfrequency was set between the first and second eigenfrequency of the soil layer. Caution is suggested when selecting one of the popular design approaches for OWTs, since the dynamic SSI effects may drive even a conservative design to restrictive frequency ranges, nonetheless along with advantageous – from a designers perspective – increased damping.  相似文献   

13.
This study investigates the effect of soil–structure interaction (SSI) on the response of base-isolated buildings. The equations of motion are formulated in the frequency domain, assuming frequency-independent soil stiffness and damping constants. An equivalent fixed-base system is developed that accounts for soil compliance and damping characteristics of the base-isolated building. Closed-form expressions are derived, followed by a thorough parametric study involving the pertinent system parameters. For preliminary design, the methodology can serve as a means to assess effective use of base isolation on building structures accounting for SSI. This study concludes that the effects of SSI are more pronounced on the modal properties of the system, especially for the case of squat and stiff base-isolated structures.  相似文献   

14.
A methodology is developed in this paper to include soil–structure interaction effects in optimal structural control, General Multi-Degree-Of-Freedom (MDOF) structural models are considered. The SSI transfer functions for ground motion and control force in the physical space are presented first, followed by a methodology for using system identification techniques to find an equivalent fixed-base model of an MDOF SSI system. An iterative technique is applied to combine these methods for the determination of optimal control gains. The control effectiveness of considering soil–structure interaction is investigated for the controlled SSI system. It is found that the control algorithm considering SSI effects is more effective than the corresponding control algorithm assuming a fixed-base system model. In addition, the advantage of applying this methodology is observed to be more prominent in the cases where the SSI effects are more significant. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
An investigation is presented of the collapse of a 630 m segment (Fukae section) of the elevated Hanshin Expressway during the 1995 Kobe earthquake. The earthquake has, from a geotechnical viewpoint, been associated with extensive liquefactions, lateral soil spreading, and damage to waterfront structures. Evidence is presented that soil–structure interaction (SSI) in non‐liquefied ground played a detrimental role in the seismic performance of this major structure. The bridge consisted of single circular concrete piers monolithically connected to a concrete deck, founded on groups of 17 piles in layers of loose to dense sands and moderate to stiff clays. There were 18 spans in total, all of which suffered a spectacular pier failure and transverse overturning. Several factors associated with poor structural design have already been identified. The scope of this work is to extend the previous studies by investigating the role of soil in the collapse. The following issues are examined: (1) seismological and geotechnical information pertaining to the site; (2) free‐field soil response; (3) response of foundation‐superstructure system; (4) evaluation of results against earlier studies that did not consider SSI. Results indicate that the role of soil in the collapse was multiple: First, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure. Second, the compliance of soil and foundation altered the vibrational characteristics of the bridge and moved it to a region of stronger response. Third, the compliance of the foundation increased the participation of the fundamental mode of the structure, inducing stronger response. It is shown that the increase in inelastic seismic demand in the piers may have exceeded 100% in comparison with piers fixed at the base. These conclusions contradict a widespread view of an always‐beneficial role of seismic SSI. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Usually for modeling of soil in a direct soil–structure interaction (SSI) problem, the equivalent linear soil properties are used. However, this approach is not valid in the vicinity of a foundation, where the soil experiences large strains and a high level of nonlinearity because of structural vibrations. The near-field method was developed and described in a companion paper to overcome this limitation. This method considers the effects of large strains and suggests a shear modulus and a damping ratio further modified in the near-field of a foundation. Validity and performance of this approach are evaluated, application examples are explained and the results of a parametric study about the role of soil and structure parameters in the extent of SSI effects on the nonlinear seismic response of structures are presented in this paper. One real existing and five, ten, fifteen and twenty story moment-resisting frame steel buildings with two different site conditions corresponding to firm and soft soils are considered and the responses obtained from the near-field method are compared with the recorded and rigorous responses. Moreover, various SSI modeling techniques are employed to investigate the accuracy and performance of each approach. The results show that the near-field method is a simple yet accurate enough approach for analysis of direct SSI problems.  相似文献   

17.
Most soil—structure interaction (SSI) analyses are still conducted assuming linear material behavior or simulating nonlinear effects through an equivalent linearization and the structure (foundation) being closely welded with the surrounding soil. It is recognized, however, that nonlinearities can play a significant role in the results. Two kinds of nonlinearities must be considered: those associated with inelastic soil behavior and those resulting from loss of contact between the foundation and the surrounding soil. In the present paper a modified lumped parametric model for the analysis of nonlinear SSI effects has been proposed. In the model both nonlinearities are taken into account. The results of tests of the soil-structure system model have been presented, which agree well with those obtained from analysis by using the proposed model.  相似文献   

18.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

20.
A stochastic approach has been formulated for the linear analysis of suspension bridges subjected to earthquake excitations. The transfer functions of various responses have been formulated while including the effects of dynamic Soil–Structure Interaction (SSI) via the use of the fixed-base modes of the structure. The excitation has been characterized by the ‘equivalent stationary’ processes corresponding to the free-field motions at each support and by an assumed coherency function between these motions. The proposed formulation considers the non-stationarity in the structural response due to sudden application of excitation by considering (i) the time-dependent frequency response functions, and (ii) the order statistics formulation for the peak factors in evolutionary response processes. The formulation has been illustrated by analysing the seismic response of the Golden Gate Bridge at San Francisco for two example excitations conforming to USNRC-specified design spectra. The significance of various governing parameters on the dynamic soil–structure interaction effects on the seismic response of suspension bridges has also been studied. It has been found that the contribution of the vertical component of ground motion to the bridge response increases with increasing soil compliance. Also, the extent to which the spatial variation of ground motion affects the bridge response depends on how significant the SSI effects are. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号