首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

2.
考虑地基土液化影响的桩基高层建筑体系地震反应分析   总被引:5,自引:2,他引:5  
本文建立了土体-结构体系地震反应分析的混合有限元法,并研究了地基土液化对地震反应的影响。本方法把土体-结构体系简化为一个完整的体系,该体系由梁(柱)单元、剪切杆单元、刚体单元、平面四边形等参单元与三角形单元、界面单元的任意组合来模拟。桩与上部结构材料视为线弹性体,土介质视为非线性材料。土的静应力-应变关系之间的非线性用邓肯一张模型来描述;土的动应力-应变关系之间的非线性和振动孔隙水压力对土的软化效  相似文献   

3.
土体剪切波速具有显著的不确定性。基于全国地震安全性评价工作实测的粘性土的大量剪切波速数据,采用2χ检验方法研究了粘性土不同埋深的剪切波速的概率分布。依据所获得的概率分布,采用相应的统计方法给出了粘性土不同埋深的剪切波速的平均值、最大值、最小值、标准差和变异系数,并给出了95%参考值下限和上限,所获得的结果可用于检验场地剪切波速测试结果的可靠性和粗略估计无实测资料场地土的剪切波速。  相似文献   

4.
The aim of this work is to propose seismic reliability‐based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity‐dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base‐isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability‐based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability‐based design (SRBD) abacuses useful to define the FPS properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The simultaneous effects of soil–structure interaction, foundation uplift and inelastic behavior of the superstructure on total displacement response of soil–structure systems are investigated. The superstructure is modeled as an equivalent single‐degree‐of‐freedom system with bilinear behavior mounted on a rigid foundation resting on distributed tensionless Winkler springs and dampers. It is well known that the behavior of soil–structure systems can be well described using a limited number of nondimensional parameters. Here, by introducing two new parameters, the concept is extended to inelastic soil–structure systems in which the foundation is allowed to uplift. An extensive parametric study is conducted for a wide range of the key parameters through nonlinear time history analyses. It is shown that while uplifting soil–structure systems experience excessive displacements, in comparison with systems that are not allowed to uplift, ductility demand in the superstructure generally decreases owing to foundation uplift. A new inelastic displacement ratio (IDR) is proposed in conjunction with a nonlinear static analysis of uplifting soil–structure systems. Simplified expressions are also provided to estimate the proposed IDR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

7.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

8.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

9.
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these near- field effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.  相似文献   

10.
基于水平摇摆阻尼系统模型,建立土-层间隔震结构简化分析模型,将地基土等效到上部结构,推导得到简化模型动力特性参数表达式,并通过对结构周期比及振型参与位移进行分析,讨论质量比及土体剪切波速对层间隔震结构自振特性的影响规律。利用虚拟激励法及均匀调制非平稳随机响应分析方法,分别从时域和频域角度分析不同场地条件下SSI效应对层间隔震结构的振动响应影响。结果表明:在刚性地基下,结构质量比对结构周期比及振型参与位移的影响较小,SSI效应放大了各子结构响应,尤其对下部子结构响应影响最大,各子结构在场地土差异下变化明显,软土场地下各子结构响应变大。  相似文献   

11.
This paper presents a statistical study of the kinematic soil-foundation-structure interaction effects on the maximum inelastic deformation demands of structures. Discussed here is the inelastic displacement ratio defined as the maximum inelastic displacement demands of structures subjected to foundation input motions divide by those of structures subjected to free-field ground motions. The displacement ratio is computed for a wide period range of elasto-plastic single-degree-of-freedom (SDOF) systems with various levels of lateral strength ratios and with different sizes of foundations. Seventy-two earthquake ground motions recorded on firm soil with average shear wave velocities between 180 m/s and 360 m/s are adopted. The effects of period of vibration, level of lateral yielding strength and dimension of foundations are investigated. The results show that kinematic interaction will reduce the maximum inelastic displacement demands of structures, especially for systems with short periods of vibration, and the larger the foundation size the smaller the maximum inelastic displacement becomes. In addition, the inelastic displacement ratio is nearly not affected by the strength ratio of structures for systems with periods of vibration greater than about 0.3 s and with strength ratios smaller than about 3.0. Expressions obtained from nonlinear regression analyses are also proposed for estimating the effects of kinematic soil-foundation-structure interaction from the maximum deformation demand of the inelastic system subjected to free-field ground motions.  相似文献   

12.
This paper is devoted to investigate the effects of near‐fault ground motions on the seismic responses of nonlinear MDOF structures considering soil‐structure interaction (SSI). Attempts are made to take into account the effects of different frequency‐content components of near‐fault records including pulse‐type (PT) and high‐frequency (HF) components via adopting an ensemble of 54 near‐fault ground motions. A deep sensitivity analysis is implemented based on the main parameters of the soil‐structure system. The soil is simulated based on the Cone model concept, and the superstructure is idealized as a nonlinear shear building. The results elucidate that SSI has approximately increasing and mitigating effects on structural responses to the PT and HF components, respectively. Also, a threshold period exists above which the HF component governs the structural responses. As the fundamental period of the structure becomes shorter and structural target ductility reduces, the contribution of the HF component to the structural responses increases, elaborately. Soil flexibility makes the threshold period increase, and the effect of the PT component becomes more significant than the HF one. In the case of soil‐structure system, slenderizing the structure also increases this threshold period and causes the PT component to be dominant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Towards formulating guidelines for performance evaluation of buildings to site-specific earthquakes, studies are reported in literature on the effect of various critical parameters. No study is, however, reported on the effect of depth of soil stratum. In this paper, a methodology is proposed and applied for performance evaluation of buildings for site-specific earthquakes including depth of soil stratum as a parameter. The methodology integrates independent procedures meant for performance evaluation of buildings and site-specific seismic analysis. Application of the proposed methodology enables to determine performance point of a building in terms of inelastic displacement and base shear. Numerical application of the methodology is demonstrated using the particulars of Delhi region. Two typical RC buildings (B1 and B2) with significantly different inelastic behaviour, assumed to be located on soil depths ranging from 10 to 200 m are chosen for the application study. Capacity spectra of the buildings are generated from nonlinear static analysis. Studies indicate that for building B1, with elasto-plastic behaviour, the depth of soil stratum strongly influences demand on inelastic displacement compared to that on inelastic base shear. For building B2, with continuously varying inelastic behaviour, the depth of soil stratum is observed to have significant influence on both the inelastic base shear as well as inelastic displacement. Responses of the buildings are compared with that obtained based on design spectrum of Indian seismic code. For both the cases, inelastic displacements as well as inelastic base shears are underestimated by Indian seismic code for certain depths of soil stratum. Proposed methodology enables the calculation of realistic values of inelastic base shear and corresponding displacement of a building for site-specific earthquakes by considering the actual characteristics of soil stratum.  相似文献   

14.
This paper presents a new direct modeling approach to analyze 3D dynamic SSI systems including building structures resting on shallow spread foundations. The direct method consists of modeling the superstructure and the underlying soil domain. Using a reduced shear modulus and an increased damping ratio resulted from an equivalent linear free-field analysis is a traditional approach for simulating behavior of the soil medium. However, this method is not accurate enough in the vicinity of foundation, or the near-field domain, where the soil experiences large strains and the behavior is highly nonlinear. This research proposes new modulus degradation and damping augmentation curves for using in the near-field zone in order to obtain more accurate results with the equivalent linear method. The mentioned values are presented as functions of dimensionless parameters controlling nonlinear behavior in the near-field zone. This paper summarizes the semi-analytical methodology of the proposed modified equivalent linear procedure. The numerical implementation and examples are given in a companion paper.  相似文献   

15.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
提出一种新的数值解与解析解耦合的理论和计算方法,研究土-结构相互作用(SSI)体系的地震动力响应。采用大型有限元软件OpenSees模拟复杂结构的非线性行为,用等效线弹性频域内解析解模拟地基土的行为,使用时域离散递归方法将频域内的解析解转化到时域内,再通过子结构边界上力和位移的协调条件来求解。二者之间的耦合和实时数据交流通过CS集成方法来实现。以一个单自由度算例和一个实际工程为例,验证此方法的精度、稳定性和工程实用性,对比在考虑和不考虑SSI体系情况下结构动力响应的区别。本文所提的耦合SSI计算方法和部分研究成果可为工程设计人员提供参考。  相似文献   

18.
The paper is concerned with the earthquake-induced displacements on pre-existing shear surfaces in cohesive soils. Results from ring shear tests have shown that during fast shearing the strength of such surfaces depends on displacement and rate of shearing. The test results have been used in a numerical analysis to assess the displacement of a rigid block sliding on a plane surface. The results from the analysis show that the earthquake-induced displacements on pre-existing shear surfaces are influenced significantly by the soil behaviour under earthquake loading conditions. The results are consistent with the field performance of pre-existing slides in cohesive soils during earthquakes.  相似文献   

19.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
提出一种基于土-结构体系地震记录的土-结构相互作用(SSI)的减震评估方法。该方法采用简化的SSI模型,通过系统辨识确定模型参数。将上部建筑结构地震反应的SSI减震效应分解为惯性相互作用和运动相互作用,同时还提出由惯性相互作用和运动相互作用单独降低结构响应的方法。将2011年东北地震太平洋沿岸期间两栋中层建筑用此方法进行分析,结果表明:当建筑物结构响应进入非弹性范围时,惯性相互作用的减震效果降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号