首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kosi river in north Bihar plains, eastern India presents a challenge in terms of long and recurring flood hazard. Despite a long history of flood control management in the basin for more than 5 decades, the river continues to bring a lot of misery through extensive flooding. This paper revisits the flooding problem in the Kosi river basin and presents an in-depth analysis of flood hydrology. We integrate the hydrological analysis with a GIS-based flood risk mapping in parts of the basin. Typical hydrological characteristics of the Kosi river include very high discharge variability, and high sediment flux from an uplifting hinterland. Annual peak discharges often exceed the mean annual flood and the low-lying tracts of the alluvial plains are extensively inundated year after year. Our flood risk analysis follows a multi-parametric approach using Analytical Hierarchy Process (AHP) and integrates geomorphological, land cover, topographic and social (population density) parameters to propose a Flood Risk Index (FRI). The flood risk map is validated with long-term inundation maps and offers a cost-effective solution for planning mitigation measures in flood-prone areas.  相似文献   

2.
Employing integrated remote sensing and GIS technology the western most part of Tripura region (Northeast India) and adjoining Bangladesh region has been investigated in the light of its geomorphological characteristics. Nature of fold ridges, several streams and the respective drainage basins are well depicted in satellite images and digital elevation model providing meaningful information. Quantitative parameters such as stream sinuosity, drainage basin asymmetry, basin elongation ratio have been computed. Main rivers of the study area, namely the Gomti and Khowai follows extremely meandering path and crosses through the transversely faulted anticlinal ridges. Fluvial anomalies viz. shift in stream channel and the abandoned meandering loops have been inferred and mapped. The Haora river in the study area exhibits northward shift in some part. Development of drainage system towards north and south from the drainage divide along the latitude 23°45N indicated up arching of the region which is also corroborated by the extracted topographic profiles. It has been observed that several tributary streams have gone dry and agricultural fields are developed along the dried up stream. These derived parameters remained useful to understand the nature of topographical modification attributed to the possible tectonic activity.  相似文献   

3.
Geomorphological map is a very effective tool in management of natural resources and helps in various types of planning and developmental activities. In the present study, geomorphological map for part of the upper Baitarani river basin was prepared using aerial photographs on 1:25,000 scale, satellite imagery in the form of IRS-IA false colour composites, generated from bands, 2,3,4 and SOI topographic sheets validated by ground truth. Since large part of the study area is inaccessible, remotely sensed data have played an important role in detailed mapping. The study area is mainly underlain by Precambrian rocks. Quarternary and recent formations are confined mainly to the river valleys. The criteria adopted for the identification and grouping of landforms of specific genetic type are the overall appearance (morphography), the shape/surface geometry (morphometry). the underlying geology, relief forming processes, and association of forms. The landform units as identified and delineated on the remotely sensed data are grouped under two genetic types, denudational and fluvial. Ten landform units, each having its own features, were identified under three geomorphic domains viz. Hill, Piedmont and Plain.  相似文献   

4.
Anandpur Sahib area of Rupnagar district (Punjab) was investigated using an integrated multi-disciplinary approach of geomorphological, structural, drainage and morphotectonic analysis through satellite data and GIS. Most commonly used geomorphic indices viz., channel sinuosity, drainage basin asymmetry, basin elongation ratio, mountain front sinuosity and valley floor to valley width ratio index have been used to identify the geomorphic indicators of active tectonics in the area. Existence of fluvial anomalies viz., abrupt changes in flow direction, flow against gradient, beheaded streams and river terraces reflect the strong structural control on the fluvial features. Asymmetric nature of drainage basin, elongated nature of the sub-watersheds, straight to curvilinear mountain fronts and narrow incised valley floors further substantiate the role of active tectonics in the region.  相似文献   

5.
本文利用多种不同比例尺的遥感图像,分析了陕北地区的地貌特征及其区域分异规律,将陕北地区分为三个地貌区,即东部黄土基岩丘陵区、中部黄土丘陵区和西部风沙区;还分析了地貌条件对农业生产的影响及地貌的区城变化所引起的农业生产布局的区域变化,在此基础上对陕北地区的农业生产布局提出了初步的看法。  相似文献   

6.
In the present study, an attempt has been made to delineate and characterize the different geomorphic units of Tundiya river catchment in a part of Lower Maharahstra Metamorphic Plateau, north-eastern part of Nagpur district, Maharashtra. The drainage, contour and delineated geological units have been overlaid on IRS-ID LISS III satellite imagery (bands 2,3 and 4) in EASI/PACE analysis system to delineate and characterize different geomorphological units and analysis of their processes based on the field observations. The study area is basically of metamorphic in origin with different geological formations and is influenced by the various fluvio-morphological processes. Based on the satellite data analysis, the distinct geomorphological units viz., table top summits, structural hills, subdued plateau, linear ridges, shallow, moderate and deeply buried foot slopes, shallow valley fills and deep valley fills have been delineated and characterized. The information generated from satellite data in the form of vector layers has been used in GIS to generate geological and geomorphological maps of the study area. The present study demonstrates that IRS-ID LISS-III data in conjunction with geology, drainage and contour parameters to enable detailed evaluation of different geomorphological units and analysis of their processes based on the field observations. The delineated geomorphological units can be utilized for evaluation and management of natural resources and geo-environment on sustainable basis at river catchment level.  相似文献   

7.
The area in and around Guntur Town in Andhra Pradesh faces an acute water problem. It represents plain land and gentle slope responsible for infiltration and groundwater recharge. Adequate groundwater resource is reported to be available in the investigated area. It has not been properly exploited. The present investigation is, therefore, undertaken to assess groundwater favourable zones for development and exploration with the help of geomorphological units and associated features. The identified units and features by remote sensing technology with the integration of conventional information and limited ground truths are shallow weathered pediplain (PPS), moderately weathered pediplain (PPM), deeply weathered pediplain (PPD), residual hill (RH) and lineaments (L). The results show that the PPD, PPM and PPS are good, moderate to good and poor to moderate promising zones, respectively for groundwater prospecting. The RH is a poor geomorphological unit in respect to prospective zone as groundwater resource. However, adequate recharge source of groundwater can be expected surrounding the RH, as it acts as surface run-off zone. Lineaments parallel to the stream courses and intersecting-lineaments are favourable indicators for groundwater development. They can also be utilized to augment groundwater resource.  相似文献   

8.
Remote sensing technique can play a vital role in geological, geomorphological and structural studies. Geology and structure of Perungulathur area in Thiruvannamalai Sambuvarayar district was studied by using Landsat imagery and aerial photographs with limited field checks. Charnockite, which forms the country rock of the area, and the interbedded pink granite and amphibolite exhibit typical tonal and textural characters on aerial photographs. The study has brought out a partly exposed structural basin which is represented by the folded structure of amphibolite and pink granite within the charnockitic country rock.  相似文献   

9.
Landsat imagery have been interpreted visually and under Additive Colour Viewer to interpret the regional geology and geomorphology in parts of Subarnarekha-Baitarani basin. The area lies south of Singhbhum shear zone and represents Precamrain shield. Important Simlipal ultrabasic volcanic complex of Orissa is included in the area. Although detailed map of the area is available, yet an attempt has been made to interpret the imagery for evaluating the results provided in comparison to the existing maps. Delineation of main lithological groups is possible. Having some data from the existing maps, lithoiogical boundary delineation of Mica Schist-Phyllite-Quartzite, Granites and Gneisses, Dhanjori Lava, Anorthosite-Gabbro Complex and Dolerite dykes, all of Precambrian age, has been done. Laterite and Quaternary sediments are also picked up. Lineament mapping has been carried out from imagery, which is difficult to map in the field. N--S and NNW-SSE lineament system is very prominent in Simlipal complex whereas in other parts NNW-SSE and NNE-SSW trends are common. The major fault plane running NNE-SSW in the area is responsible for the present-day configuration of Subarnarekha river. Identification of different geomorphological units is perhaps best done on imagery. Several geomorphic units like structural Hill, Denudational Hill, Pediment, Buried Pediment, Lateritic Clay Plain, Laterite upland, Terrace Plain etc have been mapped. Valley fills are wellpicked up from imagery. Hydrogeological potentiality of the different geologic and geomorphic units have been evaluated qualitatively. Ground water occurrence, movement and potentiality are mainly controlled by structural, geological and geomorphological set-up of the area. Buried Pediment, Laterite upland, Laterite clay plain and alluvial fills are the potential zones from the view point of ground water occurrences. Comparative study of the different Landsat bands and band-filter combinations under Additive Colour Viewer has been undertaken to find out the enhancement capability in delineating features. It is found that small scale geological and geomorphological maps can be prepared from Landsat imagery.  相似文献   

10.
Satellite remote sensing technique can be effectively utilised in mapping and monitoring the river course changes and associated geomorphological features. Ravi river, flowing along the Indo-Pakistan border, has been in the limelight for its repeated flood havoc during monsoon and abrupt encroachment at some places in the Indian territory, where it was not flowing earlier. This river, meandering in zig-zag fashion along the International boundary in Amritsar and Gurdaspur districts of Punjab, poses perennial threats to the nations’s economy due to extensive destruction happening every year. An attempt has been made to map the shift of this river and the associated geomorphological features along its course using the Indian Remote Sensing Satellite data (IRS-IA and IB LISS-IIFCC) of the period 1991–1993 and the Survey of India topographic sheets of the period 1972–1973. The study shows that there has been drastic changes in the course of Ravi during a span of 20 years due to human activities along its course. The river has shifted its course considerably towards India since its topography is against it. River training structures/bundhs, built by the neighbouring country, across and very near to the earlier river course has been the main reason for this drastic shifting. It is estimated that such massive structures could turn the river course towards India by atleast 1 to 5 km in the border districts of Punjab. This shifting of Ravi along international border poses a serious threat to the Nation’s defence system.  相似文献   

11.
舒方国  龙毅  周侗  曹阳 《测绘学报》2013,42(5):774-781
在地图水系自动综合中河流选取需要建立对不同河流重要性程度的有效判别。由于河流汇水区域直接反映河流的作用空间,因而其面积大小成为关键性的量化指标。目前基于河流的汇水区域自动提取方法主要从河流单一要素出发,按“空间均衡竞争”思想平分河流之间的区域,由于未考虑地形因素使得提取的汇水区域往往存在偏差,而传统基于DEM的汇水区域提取虽然考虑了地形,但没有与河流目标建立显性的对应关系。河流是一种天然的沟谷地性线,与山脊线具有对生互补的空间耦合关系,本文提出了一种等高线簇与河网双要素协同的河流汇水区域提取方法,该方法对河流与等高线的目标集合构建约束Delaunay三角网(CD-TIN)并将三角形分类,对不同类型的三角形分别采用骨架线提取规则与梯度向量引导的分水线搜索规则提取分水线段,连接形成网络结构并依此计算各河段的汇水区域。实验结果表明,本算法能更准确地提取河流汇水区域,从而为河流综合选取提供有效支持。  相似文献   

12.
蒙海花  王腊春  苏维词 《测绘科学》2010,35(4):87-88,27
本文以喀斯特后寨河流域为例,探讨了在Arcgis 9.0环境下从数字高程模型(DEM)中提取流域特征的详细过程,包括:DEM的生成和预处理、水流方向的确定、汇流累积量分析、河网的提取和子流域的划分以及落水洞的计算。经分析得到了研究区域河网特征以及研究区其他常用的流域特征信息,与实际河流水系特征基本吻合,从而证明该方法在分析流域的河网水系结构特征时具有一定的应用价值。  相似文献   

13.
Here an attempt has been made to highlight the importance of satellite remote sensing in land system mapping, land resources inventory and land use planning of a sample river basin (in Arunachal Pradesh) covering an area of 10,186 sq. km. The (Kemang) river basin has been divided intofour land systems viz : structural, denudational, piedmont and fluvial. Each system has been analysed with respect toeight land water-land use (resource) parameters for proper land use and environmental management of the river basin. A tentative‘productivity/development strategy ranking’ is also given for optimum planning of the basin.  相似文献   

14.
Mineral resource potential mapping is a complex analytical process,which requires the consideration and the inte-gration of a number of spatial evidences like geological,geomorphological,and wall rock alteration.The aim of this paper is to establish mineral exploration model for copper,lead,and zinc in Lanping basin area using the capability of analytical tools of Geographic Information System(GIS) and remote sensing data to generate maps showing favorable mineralized area.The geo-exploration dataset used f...  相似文献   

15.
以洪水坝河流域为例,利用1956年的地形图和2003年的ASTER遥感影像及数字高程模型,在GIS的支持下对两期数据进行统计分析,结果表明:近47年来,洪水坝河流域冰川面积减少了14.04%,长度退缩了17.28%,储量减少了2.26%。研究认为,气温显著升高是洪水坝河流域冰川快速萎缩的主要原因。在和祁连山地区、西藏以及天山地区的冰川进行对比后,发现研究区冰川消融的速率介于三地之间,初步推测是由研究区所在区域的气候和自身属性共同作用的结果。  相似文献   

16.
The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics, which explain the variation of river flows among 52 selected basins in Zimbabwe. Flow statistics considered are mean annual runoff, coefficient of variation of annual runoff, average number of days per year without flow and selected percentile flows. Basin characteristics investigated are those likely to reflect climatological, topographical and hydrogeological influences including that of land cover on river flows. The first ordination axis of flow statistics is strongly correlated with mean annual precipitation, mean annual potential evaporation and median slope. This ordination axis explains 64% of the variation of selected flow statistics among the selected drainage basins. The proportions of a basin under cultivation, and that with grasslands are correlated with the second ordination axis, which explains 6% of the variation of selected flow statistics. Mean annual precipitation is the most important basin characteristic, and this alone explains 50% of the variation of flow statistics. Median slope is the second most important basin characteristic. Proportions of a basin underlain by different lithological types had no effect on flow characteristics of selected basins. The paper has demonstrated the ability of redundancy analysis to identify basin characteristics that explain the variation of river flows among basins, including estimating the relative importance of these basin characteristics.  相似文献   

17.
DEM数据被广泛应用于多个领域,但生产过程中数据空洞的出现严重制约了其适用性。因此,对DEM数据空洞修复的研究至关重要。本文选择太原市4个不同地貌条件下的河谷、盆地、丘陵和山地试验区作为空洞区,利用ASTER GDEM数据和直接镶嵌法、反距离加权插值法及三角洲表面镶嵌法对AW3D30 DEM数据进行修复,对不同方法的修复效果进行对比分析。研究结果表明:在盆地区域,反距离加权插值法修复效果最好,三角洲表面镶嵌法次之,直接镶嵌法最弱;在起伏度稍大的河谷、丘陵和山地区域,三角洲表面镶嵌法的修复效果最好,空洞区域内部的纹理特征明显,空洞边缘区域过渡平滑,而反距离加权插值法最弱。  相似文献   

18.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

19.
Rivers flowing through the alluvium invariably have very low gradient forcing the river to flow slowly in a meandering and zigzag path. Nature and intensity of meandering is governed by the geological and tectonic conditions of the river basin. Barak River in tectonically active south Assam (Northeast India) exhibits intense meandering and shifting of the river course. Topographic data of two different years and satellite images of 4 different years covering a section of the Barak River have been investigated to verify the nature of changes undergone by the river through times. This study reveals active northward shift of the river and a prominent neck-cut off in the initial part of the study area. Northward shift of the river also occurred in the area west of Silchar. But, in the western part the river has shifted both towards north and south. Oscillatory shifting in the river channel has also been noticed. The river has shown a overall northward shift which is probably due to uplift of the southern part of the Barak River valley.  相似文献   

20.
Multitemporal NOAA/AVHRR NDVI images and monthly temperature and precipitation data were obtained across Yangtze River basin covering the period 1981–2001. The spatial and temporal patterns of NDVI are the same, while spatial analysis shows that the NDVI is influenced by the vegetation types growing in the study regions, and NDVI presents an increasing trend during the study period in the whole basin. The climate indicators play an important role in the changes of vegetation cover in the river basin. In the two Indicators, temperature has a significant effect on the NDVI values than precipitation in the whole basin. However, in the 11 subbasins, the different rules are shown in different subbasins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号