首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
台风风暴潮异模式集合数值预报技术研究及应用   总被引:2,自引:2,他引:0  
台风风暴潮数值预报的准确性在很大程度上取决于台风路径预报和强度预报的精度以及风暴潮预报模型的计算精度。目前,国际上24/48 h台风路径预报平均误差分别约为120/210 km左右[1],对于走向异常的台风误差更大;更有,根据单一的台风路径和单族的风暴潮数值预报模式并不能保证获得可靠的风暴潮预报结果。考虑多重网格法原理具有在疏密不同的网格层上进行迭代以达到平滑不同频率的误差分量,使得计算快速收敛,精度提高的特性。在前期研究基础上基于业务化高分辨率(结构网格/有限差分算法)和精细化(非结构网格/有限元算法)台风风暴潮集合数值预报模型构建多模型台风风暴潮集合数值预报系统。采用"非同族"模型进行集合预报很大程度上降低了误差相似遗传的可能性。应用该方法对典型台风风暴潮过程进行了试应用,试报结果表明:该方法对风暴潮增、减水预报效果高于单一集合预报,具有一定的应用前景。  相似文献   

2.
福建沿海精细化台风风暴潮集合数值预报技术研究及应用   总被引:5,自引:0,他引:5  
该文首先基于高级环流模型(ADCIRC)建立了一个适合台湾海峡及福建沿海区域的精细化台风风暴潮数值预报模式。利用所建立的精细化数值预报模式对影响台湾海峡及福建沿海的8次台风风暴潮个例进行了模拟,对模拟的24个站次的风暴潮增水峰值与实测值进行了对比,平均绝对误差小于15 cm;其次,为了尽可能减小由于台风路径预报误差而造成的风暴潮增减水误差,本文采用了集合数值预报技术,试报证明此方法可以在一定程度上减小风暴潮增减水误差。  相似文献   

3.
覆盖中国沿海地区的精细化台风风暴潮模型的研究及适用   总被引:1,自引:1,他引:0  
精细化风暴潮预报是目前风暴潮预报重点发展方向之一,本文首次建立起了一个覆盖整个中国沿海地区的精细化台风风暴潮数值模型,克服了以往分区域数值模型的不足,该模型在中国沿海地区的分辨率达到300m左右。模型采用了并行计算,并对2012年和2013年灾害性台风风暴潮过程进行了数值检验,计算精度和计算所用时间都能够满足业务化运行的要求。本文同时还根据中国气象局、美国国家气象局等5家主要台风预报机构给出的24h台风预报,对2013年度灾害性台风风暴潮过程进行了24h数值预报检验,检验结果表明:根据中国气象局台风登陆前24h预报可以得到更准确的风暴潮预报结果,其预报结果优于其他各家预报结果。该结论可以为今后的台风风暴潮预报中台风路径的选取提供重要的参考。  相似文献   

4.
为了精细化描述天津沿海台风天气下近岸浪和风暴潮特征,基于非结构三角网格,建立近岸浪与风暴潮的耦合模型,其中台风风场采用藤田台风模型,近岸浪采用SWAN波浪模型,风暴潮采用ADCIRC模型。通过对几次典型台风暴潮数值模拟的验证,耦合模型对风速、有效波高和增水的计算结果与实际观测资料符合性均较好,能够很好地反映台风过程中天津沿海近岸浪和风暴潮特征,可以为天津的防灾减灾工作提供科学依据。  相似文献   

5.
本文依据粤西海岸历史上台风暴潮实况,经对文献[1]的台风暴潮数值预报模式进行必要的可靠性和敏感性试验之后,确定取用该模式作为粤西海岸台风风暴潮数值预报模式。 4年来的试报结果表明,本文所及的粤西台风风暴潮数值预报模式和诺模图,具有一定的预报能力,可用其进行粤西岸段台风增水极值剖面及单站台风增水过程预测。  相似文献   

6.
一种简单的台风风暴潮过程预报方法的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王喜年 《海洋学报》1985,7(2):233-239
目前,由于台风预报路经和强度上的误差,致使在台风到达前做出风暴潮数值预报是非常困难的,在克服路径和强度预报误差方面,美国、日本均采用了类似的在预报业务中简便可行的方法[1,2]。近年来,我国风暴潮数值实验蓬勃展开,获得了一些有益成果,但尚未进入预报业务。  相似文献   

7.
一个高分辨率的长江口台风风暴潮数值预报模式及其应用   总被引:13,自引:1,他引:13  
利用河口海岸海洋模式(ECOM-Si)建立了一个适用于长江口区风暴潮的数值预报模式.该模式采用对岸线有较好拟合能力的自然正交水平坐标系统和能分辨较复杂海底地形的垂直σ坐标系统.模式考虑了长江口径流量对风暴潮的影响,部分地考虑了天文潮和风暴潮非线性相互作用对风暴增水的影响.风暴潮预报的大气强迫场用模型气压场和模型风场.利用所建立的模式对长江口区台风风暴潮进行了8个个例模拟,模拟增水与实测增水的峰值相比较,平均绝对误差不足10cm.利用本研究建立的模式,就气象因子对风暴潮位的敏感性进行了数值试验.试验结果表明,台风中心气压降低(升高)20hPa可导致约100cm的风暴潮位升高(或降低).台风最大风速半径误差对台风增水的变化影响也较显著.试验还表明,长江径流量增加1倍(减半),可以造成风暴潮的平均增加25cm(减小13cm).天文潮位相变化对风暴增水的影响数值试验表明,当台风暴潮与天文潮在不同位相相互作用,可使风暴潮位最大增加达70cm或减小90cm.  相似文献   

8.
Delft3D在天文潮与风暴潮耦合数值模拟中的应用   总被引:6,自引:0,他引:6  
储鏖 《海洋预报》2004,21(3):29-36
本文应用Delft-3D水动力学计算软件,以长江口地区为例建立的台风风暴潮、天文潮耦合数值预报模型,对台风风暴潮、天文潮两潮耦合预报模式进行探研和分析。该模式不同于以往的单纯台风增水模型与天文潮叠加的风暴潮模式,而是在计算中直接对天文潮和台风风暴潮进行两潮耦合,有效地消除了近岸地区潮波与增水之间叠加的非线性影响。通过模拟台风8114和7708过境对长江口的影响,并与实测数据比较,预报结果和实测水位过程的对比说明,台风风暴潮耦合数值预报模式对增水和高潮的过程预报是准确的,两者在高水位时同步且相差甚微。  相似文献   

9.
文章利用T639风场预报产品,对发生在2013年7月中旬的201307号台风"苏力"的海表风场进行预报,分析台风的结构特征,并探索性地利用来自我国台湾、韩国的观测资料,检验T639风场预报产品在台风期间的精度,以期可为台风风场预报、防灾减灾等提供科学依据。结果表明:(1)从定性的角度来看,预报风速与观测风速在曲线走势上保持了很好的一致性,预报风速具有较高可信度;综合考虑相关系数、偏差、均方根误差、平均绝对误差,定量地分析发现,预报风速具有较高精度,预报值在数值上稍大于观测值。(2)T639风场预报产品在中国海范围整体上具有较高精度,但在部分小区域没有充分考虑到地形效应。(3)T639风场预报产品很好地刻画了台风"苏力"的结构特征,对台风眼、台风尾迹、大风区等台风的显著特征刻画的较为形象,预报的台风走向与观测路径也大体上保持一致。  相似文献   

10.
介绍1713号"天鸽"台风风暴潮过程,并利用不同数值模型对整个台风风暴潮过程进行了后报检验,从风速和风暴潮实况角度发现中央气象台给出的台风强度弱于实况,并依据风暴潮实况分析出了"天鸽"台风可能的最大强度,指出"天鸽"登陆前后强度很可能已经达到超强台风级别,对于此类我国近海突变型台风风暴潮过程需要引起风暴潮预报工作者的高度关注。  相似文献   

11.
对在浙江省温岭登陆的“9711”号台风的风暴潮预报过程作了回顾, 总结了预报成功的经验, 探讨了对海门站预报误差较大的原因。预报实践证明, 正确的气象预报是台风暴潮预报的基础,密切关注风暴的增水变化,随时调整预报值是风暴潮预报的关键。与实测资料比较,“9711”号台风高潮位的预报是及时、准确的,它为进一步提高风暴潮的预报精度和时效积累了经验  相似文献   

12.
本文根据1968~1981年台风期间的水位观测资料,对长涂岛的台风暴潮特性及影响因子作了统计研究。结果表明,1、长涂岛的台风暴潮主要发生在7~9月间,大于100cm的最大增水较少发生;2、台风过程最大增水与台风路径的关系密切,较大的台风暴潮发生在台风接近时;3、台风过程增水与岱山气象站(相距15km)的气压有较好的负相关。而与风速有较好的正相关;4、台风过程最大增水与天文潮高潮相遇并非罕见。  相似文献   

13.
本文在分析渤海台风暴潮特征的基础上,将进入渤海的台风,按其路径的不同分为三种类型,采用动力数值计算方法,模拟了具有代表性路径的三次台风暴潮实例,取得了计算值与实测值基本一致的结果。进而用模式风暴进行风暴潮的数值估算,文中给出了10条台风移动路径,计算了在不同风速和移行速度影响下黄河口近岸12个地点的风暴潮的高度值。  相似文献   

14.
在准直角坐标下建立了粗细矩形网格嵌套的宁波市台风暴潮数值模式,模式细网格空间分辨率为2',对影响宁波市1949~2007年间的41次台风过程的风暴潮增水进行了后报模拟,将模拟的94个站次的风暴潮增水峰值前后2 d的数据与实测值进行了对比和误差统计,平均绝对误差为23.6 cm,平均相对误差27.6%,说明模式是成功的.进而,引入福建省风暴潮漫堤预警辅助决策模式"一种基于台风路径预报概率圆的风暴潮集合预报模式和基于假想台风增水数据库的风暴潮增水快速预报算法",并集成地理信息系统,建立了宁波市风暴潮漫堤预警辅助决策系统,系统可对宁波市的海塘在台风期间进行风暴潮漫堤预警报.系统于2012年在宁波市水文气象站投入试运行,1209号台风"苏拉"和1211号台风"海葵"的预报结果表明,集合预报结果比单一路径预报结果有不同程度的改善,该集合预报技术可以有效的解决由于台风路径预报偏差引起的风暴潮预报漏报和误报问题,证明模式在宁波市的应用是成功的,为其在更多区域的推广应用提供参考.  相似文献   

15.
海表风场是航海、海洋工程及防灾减灾等都十分关注的海洋要素之一,本文利用来自台湾地区和韩国的风速观测资料,检验了台风"菲特"及一次冷空气过程期间T639风场预报产品在东中国海的有效性。结果表明:(1)台风"菲特"和冷空气期间,预报风速与观测风速在曲线走势上保持了较好的一致性。(2)从相关系数来看,各个观测站的预报风速与观测风速都表现出较为密切的相关性;从偏差来看,预报风速略高于观测风速;从均方根误差和平均绝对误差来看,误差也都在可控范围之内。(3)台风"菲特"期间,T639预报风场对台风眼、台风尾迹等气旋性特征刻画得较为形象,外埔气象站、东吉岛气象站和兰屿气象站受台风影响较为显著,淡水气象站、金门气象站和绿岛气象站受台风的影响则偏弱。T639预报风场对南下的冷空气过程同样有着较好的体现,对风向和风速都有很好的模拟。  相似文献   

16.
利用一套基于非结构网格的高分辨率风暴潮-近岸浪耦合模型(ADCIRC-SWAN),选取2016年第4号热带气旋"Nida"开展针对珠江口风暴潮、近岸浪的数值模拟与预报。结果表明:选取的模型能够较好的模拟风暴潮与近岸浪,模拟结果与实况较为吻合。24 h预报、12 h预报最大增水平均相对误差为72.42%和38.54%;24 h、12 h预报最大有效波高平均相对误差为34.55%和16.3%。可以看出由于台风预报路径与实况不同,导致风暴潮和近岸浪预报与实况有较大差异,且近岸浪误差明显小于风暴潮。表明与海浪相比,风暴潮预报与台风移动路径相关性更高,在风暴潮预报中值得密切关注。  相似文献   

17.
近年来,在美国风暴潮数值预报中,Jelesnianski提出了一个剖面预报模式(以下简称杰氏模式),在作业上是很独特的。这一模式在某种合理规定的限度内,充分显示出预报基本风暴潮的技巧,并已成功地对美国东海岸及墨西哥湾沿岸的风暴潮进行了预报。因此,目前已被美国国家天气服务局确定为风暴潮的业务预报工具。 杰氏模式源于风暴潮的流体动力学方程组的数值解。与其他研究者不同的是:它在业务预报实践中,只要利用事先算好的一个在“标准海域”中、由“标准风暴”引起的内边界增水剖面,然后,通过预报海域的风场订正因子和深度订正因子进行修正,使其与实际海域和实际风暴相一致,就可作出预报。由于用这种方法所给出的结果是一条沿海域内边界的风暴潮剖面图,故称为风暴潮剖面预报方法。应用这种方法所需的基本资料是:风暴移行速度、风暴相对于海岸线的移动方向、最大风速半径、风暴中心气压及风暴登陆点附近的海域水深。因此,只要深度剖面订正值为已知,台风强度及登陆点预报得准确,利用杰氏模式就可以很快作出离风暴登陆点不同距离的沿岸增水高度及最大增水出现位置的预报。为此,我们进行了杰氏风暴潮剖面预报方法在我国的应用试验和研究。应该指出,这种方法不仅对台风暴潮的预报有用,而且对确定港工建筑,防潮工程等极值水位的设计也有其重要的应用价值。 杰氏模式能否应用到我国台风暴潮预报业务中的问题,关键在于如何确定最大风速半径以及我国沿岸的深度订正因子。实践表明:当我们确定了这两个参数后,应用杰氏方法对我国东南沿海登陆型台风进行后报,获得满意的结果。本文中,我们将着重讨论如何确定最大风速半径和给出深度订正因子问题。并简单介绍其他参数的选取方法及怎样预报台风暴潮剖面,对杰氏模式则不拟过多涉及。  相似文献   

18.
王喜年 《海洋预报》2002,19(3):65-72
第五讲只概要介绍了台风风暴潮数值预报方法中的气压场和风场计算方法。这一讲将概要介绍台风风暴潮模式预报方法。温带风暴潮数值预报方法中的气压场和风场计算是靠天气数值预报提供的,在本讲介绍温带风暴潮数值预报方法时一起简要介绍。 就世界范围而言,风暴潮数值预报方法已经在实时预报中发挥了重要作用。同时,也为风暴潮经验预报方法因子的选择提供科学依据。风暴潮数值预报能够提供的丰富预  相似文献   

19.
茅程 《海洋学研究》1999,17(4):23-28
对在浙江省温岭登陆的“9711”号台风的风暴潮预报过程作了回顾,总结了预报成功的经验,探讨了对海门站预报误差较大的原因。预报实践证明,正确的气象预报是台风暴潮预报的基础,密切关注风暴的增水变化,随时调整预报值是风暴潮预报的关键。  相似文献   

20.
将BP人工神经网络引入到风暴潮数值预报的解释应用中,并以惠州站为例,根据台风参数与增水的关系建立3套神经网络模型,对风暴潮的数值预报结果进行订正,计算结果显示:BP人工神经网络可以改进风暴潮数值模式的预报精度,可以作为惠州站数值预报结果解释应用的一种方法,同时也为台风风暴潮数值预测的解释应用提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号