首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   

2.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

3.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

4.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

5.
Summary. Using nine IDA records for the Indonesian earthquake of 1977 August 19, we have formed an optimal linear combination of the records and have measured the frequency and Q of 0 S 0 and 1 S 0. The frequency was measured using the moment ratio method. The attenuation was measured by the minimum width method and by the time-lapse method. The frequency and attenuation were measured simultaneously by varying them to obtain a best fit to the data. A 2000-hr stack, the sum of nine individual records, for 0 S 0 gave a frequency of 0.814664 mHz±4 ppm. The values for the Q of 0 S 0 for the three different methods of measurement were 5600,5833 and 5700, respectively. The error in the estimates of Q -1 is about 5 per cent for the minimum power method. For 1 S 0 a 300-hr stack yielded a frequency of 1.63151 mHz±30 ppm. The values of Q for this mode were 1960, 1800 and 1850, respectively, with an error in Q -1 of about 12 per cent for the minimum power method.  相似文献   

6.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

7.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

8.
Summary. Tidal gravity measurements have been made at six sites in Britain with two nulled LaCoste and Romberg Earth tide gravitymeters. The M 2 observations from these and two further sites are compared with calculations of the tidal loading from the seas around the British Isles and the major oceans. Models of the M 2 marine tides are convolved with Green's functions for appropriate radially stratified Earth models. The differences between the M 2 observations and the theoretical calculations are less than 0.6 μ gals and it is shown that these differences contain further information concerning the errors in the marine tide models. The M 2 marine tides on the north-west European continental shelf are reasonably well known and this allows a useful test of the feasibility of using tidal gravity measurements for the inverse ocean tide problem in areas where the ocean tides are less well known. The differential gravity loading signal between pairs of gravity stations is shown to be important for considerations of the uniqueness and accuracy of the inverse problem. M 2 tidal gravity loading maps for the British Isles and Europe have been produced which are of use in making corrections to various geodetic measurements.  相似文献   

9.
The deformation at the core–mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core–mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field ( J 2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 1018 Pa s, the postseismic J 2 variation in the next years is expected to leave a detectable signal in geodetic observations.  相似文献   

10.
Focal mechanisms of small earthquakes with magnitudes of about 3 in the SE Brazilian shield are calculated using S / P amplitude ratios. Low attenuation ( Q p from 400 to 800) in the shield upper-crustal layers allowed sharp S arrivals to be recorded up to distances of 100 km. Besides P -wave polarities, SH -wave first motions were also used to constrain the nodal-plane orientations. Normal and reverse faulting mechanisms with strike-slip components were found. The inversion of four mechanisms to estimate the stress tensor indicated a strike-slip stress regime with roughly E–W-orientated σ 1 and N–S σ 3. Both the orientations and the shape factor ( φ =0.7) of the inverted stress are in excellent agreement with theoretical predictions for that part of Brazil from the driving-force model of Coblentz & Richardson (1996) . Good agreement with the nature of the stress, as well as its orientation, was also found for the model of Meijer (1995) . Both of these theoretical models include spreading stresses along the continent/ocean lithospheric transition. Because the earthquakes are more than 300 km from the continental shelf they should not be affected by the local flexural forces caused by sediment load in the marginal basins. The agreement between observed and theoretical stresses then confirms the importance of continental spreading forces in modelling intraplate stresses.  相似文献   

11.
The coupled plate interface of subduction zones—commonly called the seismogenic zone—has been recognized as the origin of fatal earthquakes. A subset of the after-shock series of the great Antofagasta thrust-type event (1995 July 30; M w = 8.0) has been used to study the extent of the seismogenic zone in northern Chile. To achieve reliable and precise hypocentre locations we applied the concept of the minimum 1-D model, which incorporates iterative simultaneous inversion of velocity and hypocentre parameters. The minimum 1-D model is complemented by station corrections which are influenced by near-surface velocity heterogeneity and by the individual station elevations. By relocating mine blasts, which were not included in the inversion, we obtain absolute location errors of 1  km in epicentre and 2  km in focal depth. A study of the resolution parameters ALE and DSPR documents the importance of offshore stations on location accuracy for offshore events. Based on precisely determined hypo-centres we calculate a depth of 46  km for the lower limit of the seismogenic zone, which is in good agreement with previous studies for this area. For the upper limit we found a depth of 20  km. Our results of an aseismic zone between the upper limit of the seismogenic zone and the surface correlates with a detachment zone proposed by other studies; the results are also in agreement with thermal studies for the Antofagasta forearc region.  相似文献   

12.
Further evidence for oceanic excitation of polar motion   总被引:3,自引:0,他引:3  
While the role of the atmosphere in driving variations in polar motion is well established, the importance of the oceans has been recognized only recently. Further evidence for the role of the oceans in the excitation of polar motion is presented. To estimate the equatorial excitation functions, χ 1 and χ 2 , for the ocean, we use velocity and mass fields from a constant-density ocean model, driven by observed surface wind stresses and atmospheric pressure, for the period 1993–1995; comparison with similar functions derived from a more complex density-stratified ocean model indicates the effectiveness of the simple constant-density modelling approach. Corresponding atmospheric excitation functions are computed from NCEP/NCAR re-analyses. Results indicate significant improvements in the agreement with the observed polar motion excitation when the simulated oceanic effects are added to atmospheric excitation. Correlations between the polar motion and the geophysical signals at periods of 15–150 days increase from 0.53 to 0.80 and from 0.75 to 0.88 for χ 1 and χ 2 , respectively. The oceanic signals are particularly important for seasonal variations in χ 1 (correlation increases from 0.28 to 0.85 when oceanic excitation is included). A positive impact of the oceans on more rapid polar motion is also observed, up to periods as short as 5 days. The sensitivity of the results to different forcing fields and different amounts of friction in the oceans is also discussed.  相似文献   

13.
We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes ( ML = 1.9–5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P -wave polarities and 46 SH / P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E–W trend (269°–275°) and low-angle plunge (10°–25°) for all tectonic provinces in South Korea, consistent with the E–W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2–σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.  相似文献   

14.
Summary. In cases where directional data, such as palaeomagnetic directions, lie nearly along a great circle, a good approximation to the maximum likelihood estimate of the intermediate concentration parameter k 2 in the Bingham probability distribution is given by: 2( t 2/ N ) – 1 = I 1(1/2 k 2)/ I 0(1/2 k 2), where t 2 is the intermediate eigenvalue, N is the number of samples, and the Ii are the appropriate modified Bessel functions of the first kind. This estimate, the asymptotic limit as the smallest eigenvalue t 1→ 0, corresponds to restricting all points to lie on a great circle. The limit is also useful as an endpoint for interpolation, especially since numerical calculation in this region is difficult.  相似文献   

15.
Summary. This note presents an exact analytical formula for determining the magnitude of coseismic surface volume change (δ V ) of earthquake faults in a half-space. For a Poisson solid, the formula is remarkably simple; δ V = M zz |8μ, where M zz is one of the moment tensor elements of the source. Maximum δ V values derive from dip slip on faults plunging 45°. For these events, surface volume changes of 0.0001 and 4.3 km3 can be expected for magnitude 5 and 8 earthquakes respectively. All of the coseismic surface volume change is recovered in the interseismic period through relaxation of the Earth and rebound of the surface. A useful rule of thumb for estimating the magnitude of vertical rebound in 45° dip slip events is δ h p=Δ s /24, where Δ s is the coseismic slip on the fault.  相似文献   

16.
Some comments on the descriptions of the polarization states of waves   总被引:4,自引:0,他引:4  
Summary. Procedures are developed for specifying the polarization characteristics of n -dimensional waves, and in particular three-dimensional waves of geophysical interest. We show that when a wave is in a pure state or is totally polarized, all the polarization information can be represented by a single vector u in an n -dimensional unitary space. Simple measures of the degree of polarization of the wave are constructed from the characteristic equation of the spectral matrix S . These measures are functions only of the scalar invariants of S and consequently S need not be diagonalized. If S represents a purely polarized wave, the unitary vector which contains the polarization information about the wave can be obtained directly from S using any 2 n – 1 equations of n 2 possible equations. By multiplying by a phase-factor this unitary vector can be written in the form u = r 1+ i r 2 where r 1 and r 2 are orthogonal vectors in a real space. For an elliptically polarized wave, r 1 and r 2 locate the major and minor axes of the ellipse, and the ellipticity is given by the ratio of their magnitudes. The polarization parameters of ULF magnetic waves at the Earth's surface are computed from one set of five equations ( n = 3) and compared with parameters calculated using established techniques.  相似文献   

17.
Summary. Differences between estimated average heat flow values for the Mesozoic and Cenozoic formations ( Q 1) and estimated average heat flow values for the Palaeozoic formations below the erosional unconformity ( Q 2) are calculated for the Alberta part of the western Canadian sedimentary basin. Significant heat flow differences exist for these two intervals and the map of Δ Q = Q 1– Q 2 shows that Q 2 is generally greater than Q 1 in the western and south-western part of Alberta, while in the northern part of the province Q 2 is generally less than Q 1. The regional variations of Δ Q are large, with standard deviation of 26 mW m−2 and average value –13.5 mW m−2. A regional trend of Δ Q correlates with topographic relief and the hydraulic head variations in the basin. It is shown that there is a heat flow increase with depth in water recharge areas and a decrease in heat flow with depth in the low topographic elevation water discharge areas when comparing the average heat flow in Mesozoic + Cenozoic and Palaeozoic formations.  相似文献   

18.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

19.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

20.
We use GPS displacements collected in the 15 months after the 1999 Chi-Chi, Taiwan earthquake  ( M w 7.6)  to evaluate whether post-seismic deformation is better explained by afterslip or viscoelastic relaxation of the lower crust and upper mantle. We find that all viscoelastic models tested fail to fit the general features in the post-seismic GPS displacements, in contrast to the satisfactory fit obtained with afterslip models. We conclude that afterslip is the dominant mechanism in the 15-month period, and invert for the space–time distribution of afterslip, using the Extended Network Inversion Filter. Our results show high slip rates surrounding the region of greatest coseismic slip. The slip-rate distribution remains roughly stationary over the 15-month period. In contrast to the limited coseismic slip on the décollement, afterslip is prominent there. Maximum afterslip of 0.57 m occurs downdip and to the east of the hypocentral region. Afterslip at hypocentral depths is limited to the southern part of the main shock rupture, with little or no slip on the northern section where coseismic slip was greatest. Whether this results from along strike variations in frictional properties or dynamic conditions that locally favour stable sliding is not clear. In general, afterslip surrounds the area of greatest coseismic slip, consistent with post-seismic slip driven by the main shock stress change. The total accumulated geodetic afterslip moment is  3.8 × 1019 N m  , significantly more than the seismic moment released by aftershocks,  6.6 × 1018 N m  . Afterslip and aftershocks appear to have different temporal evolutions and some spatial correlations, suggesting that aftershock rates may not be completely controlled by the rate of afterslip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号