首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   

2.
Eastward propagating MJO during boreal summer and Indian monsoon droughts   总被引:1,自引:0,他引:1  
Improved understanding of underlying mechanism responsible for Indian summer monsoon (ISM) droughts is important due to their profound socio-economic impact over the region. While some droughts are associated with ‘external forcing’ such as the El-Niño and Southern Oscillation (ENSO), many ISM droughts are not related to any known ‘external forcing’. Here, we unravel a fundamental dynamic process responsible for droughts arising not only from external forcing but also those associated with internal dynamics. We show that most ISM droughts are associated with at least one very long break (VLB; breaks with duration of more than 10 days) and that the processes responsible for VLBs may also be the mechanism responsible for ISM droughts. Our analysis also reveals that all extended monsoon breaks (whether co-occurred with El-Niño or not) are associated with an eastward propagating Madden–Julian Oscillation (MJO) in the equatorial Indian Ocean and western Pacific extending to the dateline and westward propagating Rossby waves between 10° and 25°N. The divergent Rossby wave associated with the dry phase of equatorial convection propagates westward towards Indian land, couple with the northward propagating dry phase and leads to the sustenance of breaks. Thus, the propensity of eastward propagating MJO during boreal summer is largely the cause of monsoon droughts. While short breaks are not accompanied by westerly wind events (WWE) over equatorial western Pacific favorable for initiating air–sea interaction, all VLBs are accompanied by sustained WWE. The WWEs associated with all VLB during 1975–2005 initiate air–sea interaction on intraseasonal time scale, extend the warm pool eastward allowing the convectively coupled MJO to propagate further eastward and thereby sustaining the divergent circulation over India and the monsoon break. The ocean–atmosphere coupling on interannual time scale (such as El-Niño) can also produce VLB, but not necessary.  相似文献   

3.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

4.
Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden–Julian Oscillation (MJO) in the equatorial region, facilitated by air–sea interaction on intraseasonal timescales. This VLB-drought–MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air–sea interaction on intraseasonal time scale and the models’ inability to simulate VLB-drought relationship is shown to be linked to the models’ inability to represent the air–sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction.  相似文献   

5.
This paper evaluates the performance of a coupled general circulation model FGOALS_s1.1 developed by LASG/IAP in simulating the annual modes of tropical precipitation.To understand the impacts of air-sea coupling on the annual modes,the result of an off-line simulation of the atmospheric component of FGOALS_s1.1,i.e.,LASG/IAP atmospheric general circulation model SAMIL,is also analyzed.FGOALS_s1.1 can reasonably reproduce major characteristics of the annual mean precipitation.Nonetheless,the coupled model shows overestimation of precipitation over the equatorial Pacific and tropical South Pacific,and underestimation of precipitation over the northern equatorial Pacific.The monsoon mode simulated by FGOALS_s1.1 shows an equatorial anti-symmetric structure,which is consistent with the observation.The bias of the coupled model in simulating monsoon mode resembles that of SAMIL,especially over the subtropics.The main deficiency of FGOALS_s1.1 is its failure in simulating the spring-fall asymmetric mode.This is attributed to the false phase of sea surface temperature anomaly (SSTA) annual cycleover the equatorial central-castern Pacific and Indian Ocean,which leads to the bias of the Walker circulation over the equatorial Pacific and the anti-Walker circulation over the Indian Ocean in boreal spring and fall.In addition,the domains of the western North Pacific monsoon and Indian monsoon simulated by the coupled model are smaller than the observation.The study suggests that the bias of the fully coupled oceanatmosphere model can only be partly attributed to the bias of the atmospheric component.The performance of FGOALS-s1.1 in simulating the annual cycle of equatorial SST deserves further improvement.  相似文献   

6.
The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air-sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.  相似文献   

7.
In this study, we examine the characteristics of the boreal summer monsoon intraseasonal oscillation (BSISO) using the second version of the Climate Forecast System (CFSv2) and revisit the role of air–sea coupling in BSISO simulations. In particular, simulations of the BSISO in two carefully designed model experiments are compared: a fully coupled run and an uncoupled atmospheric general circulation model (AGCM) run with prescribed sea surface temperatures (SSTs). In these experiments an identical AGCM is used, and the daily mean SSTs from the coupled run are prescribed as a boundary condition in the AGCM run. Comparisons indicate that air–sea coupling plays an important role in realistically simulating the BSISO in CFSv2. Compared with the AGCM run, the coupled run not only simulates the spatial distributions of intraseasonal rainfall variations better but also shows more realistic spectral peaks and northward and eastward propagation features of the BSISO over India and the western Pacific. This study indicates that including an air–sea feedback mechanism may have the potential to improve the realism of the mean flow and intraseasonal variability in the Indian and western Pacific monsoon region.  相似文献   

8.
气候系统模式FGOALS-s1.1对热带降水年循环模态的模拟   总被引:5,自引:0,他引:5  
张丽霞  周天军  吴波  包庆 《气象学报》2008,66(6):968-981
文中评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)新一代耦合气候模式Fgoals_s1.1对热带降水年循环模态的模拟能力。通过与观测表层海温(SST)强迫的大气模式SAMIL试验结果比较,分析了海气耦合过程对年循环模态模拟效果的影响。结果表明Fgoals_s1.1能合理再现热带地区降水年循环模态的基本特征。Fgoals_s1.1模拟出了年平均降水场中的主要降水中心,但模拟的赤道和南太平洋降水偏多,而北太平洋降水则偏少。Fgoals_s1.1的季风模态降水呈现与观测一致的关于赤道反对称的特征,其模拟偏差大部分来自大气分量,尤其是在赤道外。Fgoals_s1.1的主要缺陷在于它对春秋非对称模态模拟能力低于单独大气模式,这主要是由于耦合模式模拟的SST距平的年循环位相与观测相反。SST纬向梯度的位相偏差使得太平洋沃克环流和印度洋的反沃克环流在春季强于秋季,最终导致模拟的春秋非对称模态的偏差。Fgoals_s1.1模拟的季风区范围接近观测,存在的问题在于模拟的西北太平洋季风区、东亚季风区都偏小。本文结果表明,大气模式偏差仅是Fgoals_s1.1在降水年循环模态模拟上的偏差的部分来源,改进模式模拟的SST,特别是赤道地区SST季节循环,是今后Fgoals_s1.1发展过程中急需解决的问题。  相似文献   

9.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

10.
This study examines the ability of Community Atmosphere Model (CAM) and Community Climate System Model (CCSM) to simulate the Asian summer monsoon, focusing particularly on inter-model comparison and the role of air–sea interaction. Two different versions of CAM, namely CAM4 and CAM5, are used for uncoupled simulations whereas coupled simulations are performed with CCSM4 model. Ensemble uncoupled simulations are performed for a 30 year time period whereas the coupled model is integrated for 100 years. Emphasis is placed on the simulation of monsoon precipitation by analyzing the interannual variability of the atmosphere-only simulations and sea surface temperature bias in the coupled simulation. It is found that both CAM4 and CAM5 adequately simulated monsoon precipitation, and considerably reduced systematic errors that occurred in predecessors of CAM4, although both tend to overestimate monsoon precipitation when compared with observations. The onset and cessation of the precipitation annual cycle, along with the mean climatology, are reasonably well captured in their simulations. In terms of monsoon interannual variability and its teleconnection with SST over the Pacific and Indian Ocean, both CAM4 and CAM5 showed modest skill. CAM5, with revised model physics, has significantly improved the simulation of the monsoon mean climatology and showed better skill than CAM4. Using idealized experiments with CAM5, it is seen that the adoption of new boundary layer schemes in CAM5 contributes the most to reduce the monsoon overestimation bias in its simulation. In the CCSM4 coupled simulations, several aspects of the monsoon simulation are improved by the inclusion of air–sea interaction, including the cross-variability of simulated precipitation and SST. A significant improvement is seen in the spatial distribution of monsoon mean climatology where a too-heavy monsoon precipitation, which occurred in CAM4, is rectified. A detailed investigation of this significant precipitation reduction showed that the large systematic cold SST errors in the Northern Indian Ocean reduces monsoon precipitation and delays onset by weakening local evaporation. Sensitivity experiments with CAM4 further confirmed these results by simulating a weak monsoon in the presence of cold biases in the Northern Indian Ocean. It is found that although the air–sea coupling rectifies the major weaknesses of the monsoon simulation, the SST bias in coupled simulations induces significant differences in monsoon precipitation. The overall simulation characteristics demonstrate that although the new model versions CAM4, CAM5 and CCSM4, are significantly improved, they still have major weaknesses in simulating Asian monsoon precipitation.  相似文献   

11.
Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun   总被引:2,自引:0,他引:2  
The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.  相似文献   

12.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

13.
General circulation models still show deficiencies in simulating the basic features of the West African Monsoon at intraseasonal, seasonal and interannual timescales. It is however, difficult to disentangle the remote versus regional factors that contribute to such deficiencies, and to diagnose their possible consequences for the simulation of the global atmospheric variability. The aim of the present study is to address these questions using the so-called grid point nudging technique, where prognostic atmospheric fields are relaxed either inside or outside the West African Monsoon region toward the ERA40 reanalysis. This regional or quasi-global nudging is tested in ensembles of boreal summer simulations. The impact is evaluated first on the model climatology, then on intraseasonal timescales with an emphasis on North Atlantic/Europe weather regimes, and finally on interannual timescales. Results show that systematic biases in the model climatology over West Africa are mostly of regional origin and have a limited impact outside the domain. A clear impact is found however on the eddy component of the extratropical circulation, in particular over the North Atlantic/European sector. At intraseasonal timescale, the main regional biases also resist to the quasi-global nudging though their magnitude is reduced. Conversely, nudging the model over West Africa exerts a strong impact on the frequency of the two North Atlantic weather regimes that favor the occurrence of heat waves over Europe. Significant impacts are also found at interannual timescale. Not surprisingly, the quasi-global nudging allows the model to capture the variability of large-scale dynamical monsoon indices, but exerts a weaker control on rainfall variability suggesting the additional contribution of regional processes. Conversely, nudging the model toward West Africa suppresses the spurious ENSO teleconnection that is simulated over Europe in the control experiment, thereby emphasizing the relevance of a realistic West African monsoon simulation for seasonal prediction in the extratropics. Further experiments will be devoted to case studies aiming at a better understanding of regional processes governing the monsoon variability and of the possible monsoon teleconnections, especially over Europe.  相似文献   

14.
Summary Intraseasonal variation of tropical convergence zones (TCZ) is studied focussing on the three major features of the TCZ over the Indian longitudes during the summer monsoon viz. (i) the oscillation between active and weak spells, (ii) the occurrence of two favourable zones — one over the equatorial oceans and another over the heated continent and (iii) poleward propagations of the oceanic TCZ onto the heated continent. An observational study of the intraseasonal variation over different parts of the tropics has shown that the first feature may be an ubiquitous feature of the TCZ variations, the second occurs only over the Asian summer and winter monsoon zones, and the third only over the Asian summer monsoon. Analysis of a simple monsoon model has revealed that poleward propagation occurs in the presence of a meridional surface temperature gradient because the convective heating is asymmetric, with more heating on the poleward side. Preliminary analysis of the T-21 version of the ECMWF model has shown that it is capable of simulating the three major features of the intraseasonal variation of the TCZ over the Indian longitudes during the summer monsoon.With 16 Figures  相似文献   

15.
The role of spring Wyrtki jets in modulating the equatorial Indian Ocean and the regional climate is an unexplored problem. The source of interannual variability in the spring Wyrtki jets is explored in this study. The relationship between intraseasonal and interannual variability from 1958 to 2008 and its relation with Indian Summer Monsoon is further addressed. Analysis reveals that the interannual variability in spring Wyrtki jets is controlled significantly by their intraseasonal variations. These are mostly defined by a single intraseasonal event of duration 20 days or more which either strengthens or weakens the seasonal mean jet depending on its phase. The strong spring jets are driven by such intraseasonal westerly wind bursts lasting for 20-days or more, whereas the weak jets are driven by weaker intraseasonal westerlies. During the years of strong jets, the conventional westward phase propagation of Wyrtki jets is absent and instead there is an eastward phase propagation indicating the possible role of Madden Julian Oscillation (MJO) in strengthening the spring Wyrtki jets. These strong intraseasonal westerly wind bursts with eastward phase propagation during strong years are observed mainly in late spring and have implications on June precipitation over the Indian and adjoining land mass. Anomalously strong eastward jets accumulate warm water in the eastern equatorial Indian Ocean (EIO), leading to anomalous positive upper ocean heat content and supporting more local convection in the east. This induces subsidence over the Indian landmass and alters monsoon rainfall by modulating monsoon Hadley circulation. In case of weak current years such warm anomalies are absent over the eastern EIO. Variations in the jet strength are found to have strong impact on sea level anomalies, heat content, salinity and sea surface temperature over the equatorial and north Indian Ocean making it a potentially important player in the north Indian Ocean climate variability.  相似文献   

16.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

17.
The performance of ECHAM5 atmospheric general circulation model (AGCM) is evaluated to simulate the seasonal mean and intraseasonal variability of Indian summer monsoon (ISM). The model is simulated at two different vertical resolutions, with 19 and 31 levels (L19 and L31, respectively), using observed monthly mean sea surface temperature and compared with the observation. The analyses examine the biases present in the internal dynamics of the model in simulating the mean monsoon and the evolution of the boreal summer intraseasonal oscillation (BSISO) and attempts to unveil the reason behind them. The model reasonably simulates the seasonal mean-state of the atmosphere during ISM. However, some notable discrepancies are found in the simulated summer mean moisture and rainfall distribution. Both the vertical resolutions, overestimate the seasonal mean precipitation over the oceanic regions, but underestimate the precipitation over the Indian landmass. The performance of the model improves with the increment of the vertical resolution. The AGCM reasonably simulates some salient features of BSISO, but fails to show the eastward propagation of the convection across the Maritime Continent in L19 simulation. The propagation across the Maritime Continent and tilted rainband structure improve as one moves from L19 to L31. The model unlikely shows prominent westward propagation that originates over the tropical western Pacific region. L31 also produces some of the observed characteristics of the northward propagating BSISOs. However, the northward propagating convection becomes stationary in phase 5–7. The simulation of shallow diabatic heating structure and the heavy rainfall activity over the Bay of Bengal indicate the abundance of the premature convection-generated precipitation events in the model. It is found that the moist physics is responsible for the poor simulation of the northward propagating convection anomalies.  相似文献   

18.
Karmakar  Nirupam  Misra  Vasubandhu 《Climate Dynamics》2020,54(11):4693-4710
Climate Dynamics - Onset and demise of the Indian summer monsoon (ISM) and intraseasonal variability (ISV) embedded within the ISM are dominant climatological phenomena observed over the Indian...  相似文献   

19.
Seasonal prediction of Indian Summer Monsoon (ISM) has been attempted for the current year 2011 using Community Atmosphere Model (CAM) developed at the National Centre for Atmospheric Research (NCAR). First, 30?years of model climatology starting from 1981 to 2010 has been generated to capture the variability of ISM over the Indian region using 30 seasonal simulations. The simulated model climatology has been validated with different sets of observed climatology, and it was observed that the simulated climatological rainfall is affected by model bias. Subsequently, a bias correction procedure using the Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall has been proposed. The bias-corrected rainfall climatology shows both spatial and temporal variability of ISM satisfactorily. Further, four sets of 10-member ensemble simulations of ISM 2009 and 2010 have been performed in hindcast mode using observed sea surface temperature (SST) and persistence of April SST anomaly, and it has been found that the bias-corrected model rainfall captures the seasonal variability of ISM reasonably well with some discrepancies in these two contrasting monsoon years. With this positive background, the seasonal prediction of ISM 2011 has been carried out in forecast mode with the assumption of persistence of May SST anomaly from June through September 2011. The model assessment shows an 11% deficiency in All-India Rainfall (AIR) of ISM 2011. In particular, the monthly accumulated rains are predicted to be 101% (17.6?cm), 86% (24.3?cm), 83% (21.0?cm) and 95% (15.5?cm) of normal AIR for the months of June, July, August and September, respectively.  相似文献   

20.
We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号