首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interannual variability of summer monsoon precipitation (1979–2011) over the Indochina Peninsula (ICP) is characterized using the first empirical orthogonal function of 5-month total precipitation (May to September). The leading mode, with a monopole pattern, accounts for 30.6 % of the total variance. Dynamic composites and linear regression analysis indicate that the rainy season precipitation over the ICP is linked to El Niño–Southern Oscillation (ENSO) on interannual scales. The preceding winter [D(?1)JF(0)] negative sea surface temperature (SST) over the Niño-3.4 region is predominantly correlated with the rainy season precipitation over the ICP. Notably, the simultaneous correlation between remote SST anomalies in the Niño-3.4 region and the rainy season precipitation over the ICP is weak. The interannual variation of tropical cyclones modulated by ENSO is a significant contributing factor to the rainy season precipitation over the ICP. However, this relationship is not homogeneous over the ICP if ENSO is considered. Before removing the ENSO signal, enhanced precipitation is present over the northeastern part of the ICP and reduced precipitation appears in the western ICP, especially in coastal areas. In contrast, after removing ENSO, only a minor significant positive precipitation anomaly occurs over the northeastern part of the ICP and the negative anomaly appears particularly in the western and eastern coastal regions. The results obtained through the present study are useful for our understanding of circulation mechanisms and provide information for assessing the ability of regional and global climate models in simulating the climate of Southeast Asia.  相似文献   

2.

This study investigated the relationship between the Indian Ocean Dipole (IOD) and the precipitation of Pakistan using data for the period of 1958–2010. The long-term evolution of the IOD index did not show interannual patterns similar to those of the annual precipitation of Pakistan. No linkage between the co-occurring trends of the IOD and the precipitation was traced during the period of investigation. The correlation between the IOD and the precipitation of Pakistan indicated a noteworthy impact over the monsoonal regions, especially the coastal area and the western region of Pakistan, which showed a significant positive correlation between the IOD index and annual and summer precipitation. A significant positive relationship was also revealed between the precipitation of the Balochistan Plateau and the IOD index for the summer monsoon season. No connection was observed between the IOD and the precipitation of the northern regions and the upper Indus Plain of Pakistan. Positive phases of the IOD have been noted to occur along with surplus precipitation during active monsoon conditions. The southeasterly wind moves from the Arabian Sea and transports additional moisture from the Arabian Sea to the coastal and southwestern parts of Pakistan during positive phases of the IOD.

  相似文献   

3.
Based on the monthly precipitation data of 126 observation stations from 1961 to 2000 in Yunnan Province, the interannual and decadal variability of precipitation in rainy seasons are studied by using wavelet analysis. It is shownthat there is a 2 - 6 year oscillation at the interannual time scales and a quasi-30 year oscillation at the decadal time scales. These periodic oscillations relate to the distribution of tropical heat content. When the precipitation is much more (less) than normal, the upper seawater is colder (warmer) in almost all the tropical Indian Ocean, and warmer (colder) in the western Pacific as well ascolder (warmer) in the eastern Pacific. The key areas of the anomaly heat content distribution that have significant correlation to the Yunnan precipitation inrainy season are in the southern hemispheric Indian Ocean with a dipole patternin the winter as well as in the deep basin of the South China Sea (SCS) before the Yunnan rainy season begins. Therefore, the anomalous distributions of the heat content in the southern Indian Ocean and the SCS in winter are good indicators for predicting drought or flood in Yunnan Province in the following rainy season.  相似文献   

4.
~~THE INTERANNUAL AND DECADAL VARIABILITY OF PRECIPITATION FOR YUNNAN PROVINCE IN RAINY SEASON AND ITS RELATIONSHIP WITH TROPICAL UPPER LAYER TEAT CONTENT@郑春怡$Meteorological Observatory of Yunnan Province, Kunming 650034 China @黄菲$Department of Marine Meteorology, Ocean University of China, Qingdao 266003 China @普贵明$Meteorological Observatory of Yunnan Province, Kunming 650034 China~~…  相似文献   

5.
Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Ni?o, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated.  相似文献   

6.
中国东南部冬季降水变化及其环流特征   总被引:2,自引:2,他引:0       下载免费PDF全文
利用1951-2011年中国160站降水资料及NCEP/NCAR再分析资料,分析了中国东南部冬季降水的年际变化及与之相关的环流和水汽输送特征。结果表明:中国东南部冬季降水年际差异较明显,当降水异常偏多(少)时,蒙古高压及中国广大南方地区海平面气压异常偏低(高),而亚洲附近的洋面上则异常偏高(低);500 hPa上,巴尔喀什湖附近的高压脊和东亚大槽均偏弱(强);高层东亚西风急流异常偏弱(强),中东地区急流异常偏强(弱);中国东部20~30°N出现显著异常上升(下沉)运动,低纬度地区出现异常下沉(上升)运动。影响中国东南部冬季降水的水汽输送主要有两支:来自西风带绕高原的南支气流,经过阿拉伯海和孟加拉湾向华南的输送水汽;来自低纬西太平洋,经南海向中国西南的水汽输送。此外,东亚冬季风与中国东南部冬季降水关系密切。  相似文献   

7.
The role of El Niño/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented. In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data. It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO. An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere. The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series. The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 0.74 and 0.62, respectively. The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1. Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA. Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region.  相似文献   

8.
利用1961—2016年中国160站逐月降水资料和NCEP/NCAR再分析资料,采用统计学方法分析了中国南方冬雨与El Niño事件相关关系的年代际差异及其成因。结果表明:1)1961—2016年南方冬雨年际变化显著,且降水量呈现阶段性变化,1961—1988年为少雨期,1989—2016年为多雨期。2)El Niño事件与南方冬雨之间的相关关系存在年代际差异。1961—1988年El Niño事件冬季,500 hPa上中国东部地区位势高度距平的经向差异很小,不利于冷空气向南推进,850 hPa上中国南方南风距平偏小,来自孟加拉湾和南海的水汽较难向中国南方地区输送,且中国南方地区受下沉运动异常影响,对流发展受抑制,故南方冬雨偏少;1989—2016年El Niño事件冬季,500 hPa上中国东部地区位势高度距平的经向梯度较大,有利于冷空气向南推进,850 hPa上南海北部到中国东部出现异常的西南风,有利于孟加拉湾和南海的暖湿气流向中国南方地区输送,且中国南方地区受上升运动异常控制,有利于对流发展,故南方冬雨偏多。  相似文献   

9.
Rainfall over south peninsular India during the northeast (NE) monsoon season (Oct–Dec) shows significant interannual variation. In the present study, we relate the northeast monsoon rainfall (NEMR) over south peninsular India with the major oscillations like El Ni?o Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Equatorial Indian Ocean Oscillation (EQUINOO) in the Indian and Pacific Oceans. For establishing the teleconnections, sea surface temperature, outgoing long wave radiation, and circulation data have been used. The present study reveals that the positive phase of ENSO, IOD, and EQUINOO favor the NEMR to be normal or above normal over southern peninsular India. The study reveals that the variability of NEMR over south peninsula can be well explained by its relationship with positive phase of ENSO, IOD, and EQUINOO.  相似文献   

10.
利用1961—2017年中国地面观测站日降水资料、全球大气多要素和海表温度月资料,分析华南区域持续性强降水过程的气候特征,诊断并比较与华南前汛期、后汛期区域持续性强降水年际变化相关的大气环流和海表温度异常特征。结果表明,3—12月华南都可能出现持续性强降水过程,其中汛期4—9月的占了94.4%。伴随着区域持续性强降水的年际变化,华南本地垂直上升运动显著异常是前汛期和后汛期的共同点,但前汛期、后汛期在华南及周边环流异常、水汽输送来源以及海温异常分布等方面都存在一定差异。在前汛期华南区域持续性强降水偏重年,赤道西太平洋区域海温偏低,由于大气罗斯贝波响应使西太平洋副热带高压偏强,热带西太平洋向华南区域水汽输送加强,从而有利于区域持续性强降水偏重。后汛期华南区域持续性强降水偏重年的海温异常分布是赤道中东太平洋区域正异常、东印度洋至西太平洋暖池区负异常,海温异常通过西北太平洋副热带高压、南海热带季风强度、水汽输送和垂直环流等多方面,导致后汛期区域持续性强降水偏重。   相似文献   

11.
In this paper, the impact of ENSO on the precipitation over China in the winter half-year is investigated diagnostically. The results show that positive precipitation anomalies with statistical significance appear over southern China in El Nio episodes, which are caused by the enhanced warm and humid southwesterlies along the East Asian coast in the lower troposphere. The enhanced southwesterlies transport more water vapor to southern China, and the convergence of water vapor over southern China increases the precipitable water and specific humidity. In La Nia episodes,although atmospheric elements change reversely, they are not statistically significant as those in El Nio periods. The possible physical mechanism of the different impact of ENSO cycle on the precipitation over southern China is investigated by analyzing the intraseasonal oscillations(ISOs) in El Nio and La Nia winter half-years, respectively. By comparing the characteristics of ISOs in El Nio and La Nia, a physical mechanism is proposed to explain the different responses of the precipitation over China to ENSO in the winter half-year. In El Nio episodes, over western North Pacific(WNP) and South China Sea(SCS) the ISOs are inactive and exert little effect on water vapor transport and convergence, inducing positive precipitation anomalies with statistical significance over southern China in El Nio episodes. In La Nia episodes, however, the ISOs are active, which weaken the interannual variation signals of ENSO over WNP and southern China and lead to the insignificance of the interannual signals related to ENSO. Therefore, the different responses of precipitation over China to ENSO in the winter half-year are possibly caused by the difference of intraseasonal oscillations over WNP and SCS between El Nio and La Nia.  相似文献   

12.
马音  陈文  冯瑞权 《大气科学》2012,36(2):397-410
基于我国160站59年(1951~2009年)的月降水观测资料、美国气象环境预报中心和国家大气研究中心(NCEP/NCAR)提供的再分析资料和Hadley中心的海表温度(Sea Surface Temperature,简称SST)资料,对我国东部(100°E以东,15°N~40°N)梅雨期(6月和7月)降水的时空变化特...  相似文献   

13.
The climatological features and interannual variation of winter-to-spring transition over southern China and its surrounding areas, and its possible mechanisms are examined in this study. The climatological mean winter-to-spring transition is approximately in mid-March over southern China and the northern South China Sea. During the transition stage, anomalous southwest winds prevail at low-level over southern China and its nearby regions with enhanced convergence center over southern China, bringing more moisture from the Bay of Bengal (BOB) and the South China Sea (SCS) to southern China; meanwhile, the upper level is characterized by an obvious divergence wind pattern over southern China to the southwest part of Japan and enhanced upward motion. All the change of circulation is favorable to an increase of precipitation over southern China after seasonal transition. The winter-to-spring transition is predominantly on the interannual variation over southern China and the northern SCS. Early winter-to-spring transitions may induce more precipitation over southern China in spring, especially in March, while late cases will result in less precipitation. The interannual variability of the winter-to-spring transition and the related large-scale circulation are closely associated with the decaying phase of ENSO events. The warm ENSO events contribute to early winter-to-spring transitions and more precipitation over southern China.  相似文献   

14.
ENSO对中国冬半年降水影响的不对称性及机制分析   总被引:2,自引:4,他引:2  
利用1979—2010年观测和再分析资料,诊断分析ENSO对中国华南冬半年降水的影响及其机制。结果表明,在El Ni?o冬半年期间,东亚沿岸上空对流层低层南风的增强导致了水汽输送明显偏多,水汽在华南辐合,使得大气可降水量和比湿增加,降水显著偏多。而在La Ni?a冬半年期间,这些大气要素并没有呈现显著的相反变化,负异常的量值很弱并在统计上不显著。通过进一步分析El Ni?o和La Ni?a冬半年期间季节内振荡的特点,给出一种华南冬半年降水对ENSO信号不对称响应的物理解释。El Ni?o期间,热带西太平洋到南海地区的季节内振荡不活跃,与El Ni?o相联系的西北太平洋反气旋性环流异常造成的水汽输送以及水汽辐合在华南能够稳定维持,致使华南降水明显偏多。但在La Ni?a冬半年期间,季节内振荡很活跃,与La Ni?a相联系的西北太平洋气旋性环流异常受到季节内时间尺度的扰动影响,ENSO的年际变化信号被季节内振荡破坏,使得西北太平洋和华南的年际异常信号不能得到稳定维持,导致与ENSO信号相联系的年际变化在统计上不显著。因此,热带西太平洋到南海地区的季节内振荡强度在El Ni?o和La Ni?a冬半年期间的差异,是华南冬半年降水对ENSO信号不对称响应的一个主要原因。   相似文献   

15.
利用中国站点观测逐月降水和月平均气温资料以及NCEP/NCAR再分析资料,揭示了热带印度洋偶极子(IOD)与中国夏季气候异常关系的年代际变化.结果表明:IOD与中国夏季年际气候异常的关系既有稳定的一面,又存在着年代际变化.较为稳定的关系表现为:IOD与同年夏季长江黄河之间的降水变化存在显著负相关,与四川气温变化存在显著正相关;IOD与次年夏季四川降水存在显著正相关.伴随发生在20世纪70年代末的大尺度环流年代际转型,IOD与中国气候年际异常的联系亦发生变化:IOD正位相年的同年夏季降水异常型,由中国大部分地区偏少变为长江以南(北)偏多(少),气温由西南地区东部偏暖变为长江以南(北)偏冷(暖);次年夏季降水由全国大部分地区偏多变为长江以南(北)偏少(多),气温由全国大部分地区相关不显著变为黄河以南大部分地区显著偏暖.在IOD负位相年,中国夏季气候异常的特征与IOD正位相年相反.在20世纪70年代末的大尺度年代际气候转犁前后,与IOD相关的东亚大气环流异常特征明显不同.在IOD发展阶段,在70年代末以前,印度夏季风和南海季风偏强,副热带高压势力偏弱,导致中国华南大部分地区降水偏少,华北西部以及内蒙古中部等地降水偏多;70年代末以后,东亚大陆中纬度为弱的东风距平,导致新疆北部降水偏少,气温偏高,华南降水偏多.在IOD次年夏季,70年代末以前,华南、河套以及四川等地盛行偏南气流,降水偏多;70年代末以后,南亚高压和西太平洋副高偏西偏强,华南、江南降水偏少.  相似文献   

16.
EFFECTS OF INDIAN OCEAN SSTA WITH ENSO ON WINTER RAINFALL IN CHINA   总被引:2,自引:1,他引:1  
Based on Hadley Center monthly global SST, 1960-2009 NCEP/NCAR reanalysis data and observation rainfall data over 160 stations across China, the combined effect of Indian Ocean Dipole (IOD) and Pacific SSTA (ENSO) on winter rainfall in China and their different roles are investigated in the work. The study focuses on the differences among the winter precipitation pattern during the years with Indian Ocean Dipole (IOD) only, ENSO only, and IOD and ENSO concurrence. It is shown that although the occurrences of the sea surface temperature anomalies of IOD and ENSO are of a high degree of synergy, their impacts on the winter precipitation are not the same. In the year with positive phase of IOD, the winter rainfall will be more than normal in Southwest China (except western Yunnan), North China and Northeast China while it will be less in Yangtze River and Huaihe River Basins. The result is contrary during the year with negative phase of IOD. However, the impact of IOD positive phase on winter precipitation is more significant than that of the negative phase. When the IOD appears along with ENSO, the ENSO signal will enhance the influence of IOD on winter precipitation of Southwest China (except western Yunnan), Inner Mongolia and Northeast China. In addition, this paper makes a preliminary analysis of the circulation causes of the relationship between IOD and the winter rainfall in China.  相似文献   

17.
This study examines the influence of the mid-latitude circulation on the surface heat low (HL) and associated monsoon rainfall over northwestern India and Pakistan using the ERA40 data and high resolution (T106L31) climate model ECHAM5 simulation. Special emphasis is given to the surface HL which forms over Pakistan and adjoining areas of India, Iran and Afghanistan during the summer season. A heat low index (HLI) is defined to depict the surface HL. The HLI displays significant correlations with the upper level mid-latitude circulation over western central Asia and low level monsoon circulation over Arabian Sea and acts as a bridge connecting the mid-latitude wave train to the Indian summer monsoon. A time-lagged singular value decomposition analysis reveals that the eastward propagation of the mid-latitude circumglobal wave train (CGT) influences the surface pressure anomalies over the Indian domain. The largest low (negative) pressure anomalies over the western parts of the HL region (i.e., Iran and Afghanistan) occur in conjunction with the upper level anomalous high that develops over western-central Asia during the positive phase of the CGT. The composite analysis also reveals a significant increase in the low pressure anomalies over Iran and Afghanistan during the positive phase of CGT. The westward increasing low pressure anomalies with its north?Csouth orientation provokes enormous north?Csouth pressure gradient (lower pressure over land than over sea). This in turn enables the moist southerly flow from the Arabian Sea to penetrate farther northward over northwestern India and Pakistan. A monsoon trough like conditions develops over northwestern India and Pakistan where the moist southwesterly flow from the Arabian Sea and the Persian Gulf converge. The convergence in association with the orographic uplifting expedites convection and associated precipitation over northwestern India and Pakistan. The high resolution climate model ECHAM5 simulation also underlines the proposed findings and mechanism.  相似文献   

18.
M. Nuncio  K. Satheesan 《Climate Dynamics》2014,43(7-8):1965-1972
Southern high latitude precipitation during austral spring in relation to the Indian Ocean Dipole (IOD) and ENSO is investigated in the present study. Both the IOD and ENSO generate Rossby waves trains that create positive and negative pressure anomalies. These anomalous pressure centres generate meridional moisture fluxes that impact the precipitation. Influence of the IOD is detected mainly in the Ross sea region, where the southward moisture transport induced by the low pressure cell enhances precipitation. During strong IOD years, east Antarctica near 100°E, is also characterised by enhanced precipitation induced by the southward moisture transport by a high pressure cell located south of Australia. In the Dronning Maud Land, precipitation is linked to the moisture advection through the Atlantic during ENSO years and not during the IOD years.  相似文献   

19.
胡帅  吴波  周天军 《大气科学》2019,43(4):831-845
印度洋偶极子(IOD)是热带印度洋年际变率主导模态之一,对于区域乃至全球气候有重要影响。准确预报IOD对于短期气候预测具有重要意义。中国科学院大气物理研究所最近建立了近期气候预测系统IAP-DecPreS,其初始化方案采用“集合最优插值—分析增量更新”(EnOI-IAU)方案,能够同化观测的海洋次表层温度廓线资料。本文分析了IAP-DecPreS季节回报试验对IOD的回报技巧,重点比较了全场同化和异常场同化两种初始化策略下预测系统对IOD的回报技巧。分析表明,8月起报秋季IOD,无论从确定性预报还是概率性预报的角度,基于全场同化的回报试验技巧均高于异常场同化的回报试验。对于5月起报的秋季IOD,基于两种初始化策略的回报试验技巧相当。研究发现,全场同化策略相对于异常场的优势主要源于它提高了对伴随ENSO发生的IOD的预报技巧。ENSO遥强迫触发的热带东印度洋“风—蒸发—SST”正反馈过程是IOD发展和维持的关键。采用全场同化策略的回报结果能够更好地模拟出IOD发展过程中ENSO遥强迫产生的异常降水场和异常风场的空间分布特征;而采用异常场同化策略,模拟的异常降水场和风场偏差较大。导致两种初始化策略预测结果技巧差异的主要原因是,全场同化能够减小模式对热带印度洋气候平均态降水固有的模拟偏差,从而提升了热带印度洋对ENSO遥强迫响应的模拟能力。而异常场同化由于在同化过程中保持了模式固有的气候平均态,因此模拟的热带印度洋对ENSO遥强迫的响应存在与模式自由积分类似的模拟偏差。  相似文献   

20.
The information acquired from Argo floats such as temperature and salinity profiles is used to study water mass properties in the Arabian Sea from 2002 to 2004. An examination of water mass structure at different locations reveals the presence of high salinity water of marginal seas in the Arabian Sea. During the southwest monsoon season, the impact of the early onset of southwesterlies is noticed in the upper ocean temperature and salinity structure over the Western Arabian Sea (WAS) during 2002. Surface density variations are found to be more during the southwest monsoon season due to strong wind forcing. Argo temperature and salinity profiles showed that the winter cooling and the formation of Arabian Sea High Salinity Water (ASHSW) over the Northern Arabian Sea (NAS) began during the second half of November within the upper 100 m depth. In the NAS, the Persian Gulf Water (PGW) salinity is above 36, as PGW moves towards the south along isopycnal layer of 26.6σθθ is potential density) salinity decreases. It is observed that the PGW high salinity water is not continuously prominent over the WAS in 2002 and in 2003. In the WAS the 27.2σθ isopycnal layer depth, corresponding to Red Sea Water (RSW), did not exactly follow the pattern of isotherms as is seen in the northern and eastern Arabian Sea. The variability related to RSW salinity is due to the underwater currents. The present study also confirms that RSW is prominent in the southeast Arabian Sea at the potential density of 27.2 with a maximum in summer monsoon compared to other seasons. The observed peak in the salinity at 27.2 density level during the spring intermonsoon is due to the influence of winter time spreading of RSW to the south of Socotra in 2002. Westward movement of Argo floats in the region east of Socotra during the winter is evident in both the observations and model studies. Water mass properties change when they move away from their source region due to the consistent horizontal advection. The changes in the water mass properties along the Argo float trajectory are confirmed by comparing with the climatological mean monthly values from the World Ocean Atlas 2001 data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号