首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δi Si, δi O and δi H) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δi Si and the mean Si-O-Si angle for both Q 1 and Q 2, where Q n denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δ i O and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom (Si-O-H···O), and the δ i H increase with the same parameter. Received: 18 July 1997 / Revised, accepted: 23 February 1998  相似文献   

2.
 The chemical bonding in the ring silicate mineral dioptase is investigated on the basis of accurate single-crystal X-ray diffraction data. A multipole model is used in the refinements. Static deformation electron density is mapped for the silicon tetrahedron, Cu-octahedron and water molecule in different sections. The silicon tetrahedron exhibits peaks resulting from σ-bonds between Si–sp3 hybrid orbitals and O–p orbitals. The excess density is located on bonds between the Si atom and bridge (in ring) O(1)-, O(1′)-oxygens and across the interior of the Si–O–Si angle. In the Jahn-Teller distorted Cu octahedron, in addition to peaks which result from single Cu–O σ-bonds, there are peaks which are due to 3d electrons. The analysis of crystal-field influence on the Cu charge distribution is made using the tetragonal D 4 d approximation for the low-symmetry (C1) Cu octahedron. The calculation of the occupancies of the 3d atomic orbitals shows that the Cu non-bonding orbitals are most populated (˜20%) and the bonding orbitals least populated (14%), as is typical for the Jahn-Teller octahedron. The effective atomic charge on the Cu atom in dioptase determined from the multipoles is +1.23e: closer to the Cu+1 than to the Cu+2 state. The charge on the Si atom has a value +1.17e, which is in the range typical for Si atoms already determined by this method. The accumulation of density on bridge oxygens and across the interior of the Si–O–Si angle may be explained by additional strain in the bond with the decrease of the Si–O–Si angle in dioptase to 132°. The same effect was found earlier in coesite. A single-crystal neutron diffraction study shows that dioptase becomes antiferromagnetic below a Néel temperature of 15.9(1) K, in contrast to the previously reported specific heat anomaly at 21 K. The magnetic propagation vector is (0, 0, 3/2) on the hexagonal triple cell or (1/2, 1/2, 1/2) in rhombohedral indices. The relation between the antiferromagnetic and the charge-density models for dioptase is discussed. The less occupied Cu d x2−y2 orbitals are responsible for the magnetic properties. These lie in the Cu–O squares, which are approximately perpendicular to c hex, but which are alternately inclined to it by a small angle. The magnetic moments of 0.59(1)μ B on the Cu ions in the same level are ordered ferromagnetically, but between ions in alternate levels the coupling is antiferromagnet. Within experimental error the magnetic moments are perpendicular to the square planes, which make an angle ±13(3)° to the triad axis. Received: 8 June 2001 / Accepted: 10 January 2002  相似文献   

3.
A new version of the STRUCTON (2009) computer model is proposed for the simulation of the molecular mass distributions (MMD) characterizing the diversity of anions in silicate melts depending on their polymerization and temperature. In contrast to earlier versions, the new version of the model accounts for disproportionation reactions of Q n species and makes use of their proportions in the statistical simulations of the origin of real Si-O complexes. The new potentialities of the STRUCTON program package are illustrated by its application to studying the structural-chemical characteristics of melts in the Na2O-SiO2 system along its liquidus line, including the points of eutectics and phase transitions at 0.333 ≤ $ N_{SiO_2 } $ N_{SiO_2 } < 0.500. This problem is solved with the use of a temperature-composition dependence of polymerization constants K p Na in the Toop-Samis approximation. The variations in K p Na were proved to be as large as three orders of magnitude due to both the temperature effect at a constant composition and the composition effect at a constant temperature. The results of the MMD simulations on the liquidus show that the concentration of the SiO44− ion strongly decreases, and the proportion of chain species increases compared to those at a stochastic distribution. The concentration of the Si2O76− anion reaches its maximum (∼42%) at 40 mol % in the liquid, i.e., the composition of Na6Si2O7. At $ N_{SiO_2 } $ N_{SiO_2 } > 0.40, this ion dominates over the SiO44− monomer. More silicic melts with $ N_{SiO_2 } $ N_{SiO_2 } ≥ 0.45, are dominated by (Si n O3n )3n ring species, and the concentrations of these species are related as (Si3O9)6− > (Si4O12)8− > (Si5O15)10−. The maximum concentration of these flat rings also occurs near the composition of stoichiometric metasilicate with Si/O = 0.333. The comparison of the dependence of the average size of anions i av and the average number of their species on depolymerization indicates that a change in the proportion of Q n species in melt at decreasing temperature results in structural restyling and an increase in the average size of Si-O complexes. The average number of anion species thereby decreases compared to that in a stochastic MMD. The results presented in this publication direct the progress in the thermodynamic theory of silicate melts to a new avenue that makes use of the capabilities and advantages of the ion-polymer model, the theory of associated solutions, spectroscopic data, and the experimental study of variations in oxide activities depending on composition and temperature.  相似文献   

4.
Relative humidity ( P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} , partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na+/Ca2+ cations and H2O molecules. The observation of different interactions of H2O molecules and Na+/Ca2+ cations with host aluminosilicate frameworks under high- and low- P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions indicated the development of different local strain fields, arising from cation–H2O interactions in NAT-type channels. These strain fields influence the Si–O/Al–O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm−1 in natrolite, 2,276 cm−1 in scolecite, and 2,176 and 2,259 cm−1 in mesolite) result from strong cation–H2O–Al–Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na+/Ca2+ cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm−1 absorption bands in mesolite also appear to be related to Na+/Ca2+ order–disorder that occur when mesolite loses its Ow4 H2O molecules.  相似文献   

5.
Self-diffusion of Si under anhydrous conditions at 1 atm has been measured in natural zircon. The source of diffusant for experiments was a mixture of ZrO2 and 30Si-enriched SiO2 in 1:1 molar proportions; experiments were run in crimped Pt capsules in 1-atm furnaces. 30Si profiles were measured with both Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis with the resonant nuclear reaction 30Si(p,γ)31P. For Si diffusion normal to c over the temperature range 1,350–1,550°C, we obtain an Arrhenius relation D = 5.8 exp(−702 ± 54 kJ mol−1/RT) m2 s−1 for the NRA measurements, which agrees within uncertainty with an Arrhenius relation determined from the RBS measurements [62 exp(−738 ± 61 kJ mol−1/RT) m2 s−1]. Diffusion of Si parallel to c appears slightly faster, but agrees within experimental uncertainty at most temperatures with diffusivities for Si normal to c. Diffusion of Si in zircon is similar to that of Ti, but about an order of magnitude faster than diffusion of Hf and two orders of magnitude faster than diffusion of U and Th. Si diffusion is, however, many orders of magnitude slower than oxygen diffusion under both dry and hydrothermal conditions, with the difference increasing with decreasing temperature because of the larger activation energy for Si diffusion. If we consider Hf as a proxy for Zr, given its similar charge and size, we can rank the diffusivities of the major constituents in zircon as follows: D Zr < D Si << D O, dry < D O, ‘wet’.  相似文献   

6.
It is estimated that the uranium-oxygen bond dissociation energy (D U 4 −0 + =1465.38kJ/mol) is higher than silicon-and aluminium-oxygen bond dissociation energies (DSi4 −0 + =1264.41 kJ/mol and DAl3 −0 + =1105.32 kJ/mol). During the process of magmatic differentiation with increasing degree of polymerization for silicon-oxygen complex ion, uranium in granitic melts tends to combine with oxygen to form the coordination polyhedron [UO x 2x−n ] and to occur in the form of nuclei and crystals of uraninite, as has been demonstrated by the induced fission-track study of quartz syenite from Huangmeijian.  相似文献   

7.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   

8.
Wadeite K2ZrSi3O9 and its analogues K2TiSi3O9 and Cs2ZrSi3O9, synthesized by high-temperature solid-state sintering, have been investigated using powder X-ray diffraction coupled with Rietveld analysis and high-temperature oxide melt solution calorimetry. The crystal chemistry and energetics of these phases, together with K2SiVISi3 IVO9, a high-pressure wadeite analogue containing both tetrahedral and octahedral Si, are discussed in term of ionic substitutions. As the size of the octahedral framework cation increases, Si4+ → Ti4+ → Zr4+, the cell parameter c increases at a much higher rate than a. In contrast, increasing the interstitial alkali cation size (K+ → Cs+) results in a higher rate of increase in a compared with c. This behavior can be attributed to framework distortion around the interstitial cation. The enthalpies of formation from the constituent oxides (ΔHf,ox0) and from the elements (ΔHf,el0) have been determined from drop-solution calorimetry into 2PbO·B2O3 solvent at 975 K. The obtained values (in kJ/mol) are as follows: ΔHf,ox0 (K2TiSi3O9) = −355.8 ± 3.0, ΔHf,el0 (K2TiSi3O9) = −4395.1 ± 4.8, ΔHf,ox0 (K2ZrSi3O9) = −374.3 ± 3.3, ΔHf,el0 (K2ZrSi3O9) = −4569.9 ± 5.0, ΔHf,ox0 (Cs2ZrSi3O9) = −396.6 ± 4.4, and ΔHf,el0 (Cs2ZrSi3O9) = −4575.0 ± 5.5. The enthalpies of formation for K2SiVISi3 IVO9 were calculated from its drop-solution enthalpy of an earlier study (Akaogi et al. 2004), and the obtained ΔHf,ox0 (K2SiSi3O9) = −319.7 ± 3.4 and ΔHf,el0 (K2SiSi3O9) = −4288.7 ± 5.1 kJ/mol. With increasing the size of the octahedral framework cation or of the interstitial alkali cation, the formation enthalpies become more exothermic. This trend is consistent with the general behavior of increasing energetic stability with decreasing ionic potential (z/r) seen in many oxide and silicate systems. Further, increasing the size of the octahedral framework cation appears to induce more rapid increase in stability than increasing the interstitial alkali cation size, suggesting that framework cations play a more dominant role in wadeite stability.  相似文献   

9.
Diopside (CaMgSi2O6) and pseudowollastonite (CaSiO3) have been studied by X-ray powder diffraction and Raman spectroscopy up to their respective melting points. In agreement with previous unit-cell parameters determinations below 1100 K, thermal expansion of diopside along the a and c axis is much smaller than along the b axis. For pseudowollastonite, the axis expansivity increases slightly in the order b>a>c. For both minerals, the change in unit-cell angles is very small and there are no anomalous variations of the other unit-cell parameters near the melting point. With increasing temperatures, the main changes observed in the Raman spectra are strong increases of the linewidths for those bands which mainly represent Si−O−Si bending (near 600 cm−1) or involve Ca−O or Mg−O stretching, in the range 270–500 cm−1 for diopside, and 240–450 cm−1 for pseudowollastonite. At temperatures near the onset of calorimetric premelting effects, this extensive band widening results in a broad Raman feature that can no longer be deconvoluted into its individual components. No significant changes affect the Si−O streching modes. For both diopside and pseudowollastonite, premelting appears to be associated with enhanced dynamics of the alkaline-earth elements. This conclusion contrasts markedly with that drawn for sodium metasilicate in which weaker bonding of sodium allows the silicate framework to distort and deform in such a way as to prefigure the silicate entities present in the melt. Received 16 July 1997 / Revised, accepted: 6 March 1998  相似文献   

10.
Thermal diffusivity (D) was measured using laser-flash analysis from oriented single-crystal low-sanidine (K0.92Na0.08Al0.99Fe3+ 0.005Si2.95O8), and three glasses near KAlSi3O8. Viscosity measurements of the three supercooled liquids, in the range 106.8 to 1012.3 Pa s, confirm near-Arrhenian behavior, varying subtly with composition. For crystal and glass, D decreases with T, approaching a constant near 1,000 K: D sat ∼ 0.65 ± 0.3 mm2 s−1 for bulk crystal and ∼0.53 ± 0.03 mm2 s−1 for the glass. A rapid decrease near 1,400 K is consistent with crossing the glass transition. Melt behavior is approximated by D = 0.475 ± 0.01 mm2 s−1. Thermal conductivity (k lat) of glass, calculated using previous heat capacity (C P) and new density data, increases with T because C P strongly increases with T. For melt, k lat reaches a plateau near 1.45 W m−1 K−1, and is always below k lat of the crystal. Melting of potassium feldspars impedes heat transport, providing positive thermal feedback that may promote further melting in continental crust.  相似文献   

11.
We report here a single-crystal polarized-light study of stoppaniite, ideally (Fe,Al,Mg)4(Be6Si12O36)(H2O)2(Na,□), from Capranica (Viterbo). Polarized-light FTIR spectra were collected on an oriented (hk0) section, doubly polished to 15 μm. The spectrum shows two main bands at 3,660 and 3,595 cm−1; the former is strongly polarized for E c, while the latter is polarized for E //c. A sharp and very intense band at 1,620 cm−1, plus minor features at 4,000 and 3,228 cm−1 are also polarized for E //c. On the basis of literature data and considering the pleochroic behavior of the absorptions, the 3,660 cm−1 band is assigned to the ν3 stretching mode and the 1,620 cm−1 (associated with an overtone 2*ν2 at 3,230 cm−1) band to the ν2 bending mode of “type II” water molecules within the structural channels of the studied beryl. The sharp band at 3,595 cm−1 is not associated with a corresponding ν2 bending mode; thus it is assigned to the stretching vibration of O–H groups in the sample. The minor 4,000 cm−1 feature can be assigned to the combination of the O–H bond parallel to c with a low-frequency metal-oxygen mode such as the Na–O stretching mode. The present results suggest that the interpretation of the FTIR spectrum of Na-rich beryl needs to be carefully reconsidered.  相似文献   

12.
Summary The complexation of aluminium(III) and silicon(IV) was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25 °C. The measurements were performed as potentiometric titrations using a hydrogen electrode with OH ions being generated coulometrically. The total concentrations of Si(IV) and Al(III) respectively [Si tot ] and [Al t ot], and −log[H +] were varied within the limits 0.3 < [Si tot ] < 2.5 mM, 0.5 < [Al tot ] < 2.6 mM, and 2 ≤ -log[H +] ≤ 4.2. Within these ranges of concentration, evidence is given for the formation of an AlSiO(OH) 3 2+ complex with a formation constant log β1,1-1 = −2.75 ± 0.1 defined by the reaction Al 3++Si (OH)4AlOSi(OH) 3 2+ +H + An extrapolation of this value to I=0 gives log β1,1-1 = −2.30. The calculated value of logK (Al 3++SiO(OH) 3 AlOSi(OH) 3 2+ ) = 6.72 (I=0.6 M) can be compared with corresponding constants for the formation of AlF 2+ and AlOH 2+ , which are equal to 6.16 and 8.20. Obviously, the stability of these Al(III) complexes decreases within the series OH >SiO(OH) 3  > F   相似文献   

13.
Kyanoxalite, a new member of the cancrinite group, has been identified in hydrothermally altered hyperalkaline rocks and pegmatites of the Lovozero alkaline pluton, Kola Peninsula, Russia. It was found at Mount Karnasurt (holotype) in association with nepheline, aegirine, sodalite, nosean, albite, lomonosovite, murmanite, fluorapatite, loparite, and natrolite and at Mt. Alluaiv. Kyanoxalite is transparent, ranging in color from bright light blue, greenish light blue and grayish light blue to colorless. The new mineral is brittle, with a perfect cleavage parallel to (100). Mohs hardness is 5–5.5. The measured and calculated densitiesare 2.30(1) and 2.327 g/cm3, respectively. Kyanoxalite is uniaxial, negative, ω = 1.794(1), ɛ = 1.491(1). It is pleochroic from colorless along E to light blue along O. The IR spectrum indicates the presence of oxalate anions C2O42− and water molecules in the absence of CO32− Oxalate ions are confirmed by anion chromatography. The chemical composition (electron microprobe; water was determined by a modified Penfield method and carbon was determined by selective sorption from annealing products) is as follows, wt %: 19.70 Na2O, 1.92 K2O, 0.17 CaO, 27.41 Al2O3, 38.68 SiO2, 0.64 P2O5, 1.05 SO3, 3.23 C2O3, 8.42 H2O; the total is 101.18. The empirical formula (Z = 1) is (Na6.45K0.41Ca0.03)Σ6.89(Si6.53Al5.46O24)[(C2O4)0.455(SO4)0.13(PO4)0.09(OH)0.01]Σ0.68 · 4.74H2O. The idealized formula is Na7(Al5−6Si6−7O24)(C2O4)0.5−1 · 5H2O. Kyanoxalite is hexagonal, the space group is P63, a = 12.744(8), c = 5.213(6) -ray powder diffraction pattern are as follows, [d, [A] (I, %)(hkl)]: 6.39(44) (110), 4.73 (92) (101), 3.679 (72) (300), 3.264 (100) (211, 121), 2.760 (29) (400), 2.618 (36) (002), 2.216, (29) (302, 330). According to the X-ray single crystal study (R = 0.033), two independent C2O4 groups statistically occupy the sites on the axis 63. The new mineral is the first natural silicate with an additional organic anion and is the most hydrated member of the cancrinite group. Its name reflects the color (κɛανgoΣς is light blue in Greek) and the species-forming role of oxalate anions. The holotype is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration no. 3735/1.  相似文献   

14.
 Enthalpies of drop solution (ΔH drop-sol) of CaGeO3, Ca(Si0.1Ge0.9)O3, Ca(Si0.2Ge0.8)O3, Ca(Si0.3Ge0.7)O3 perovskite solid solutions and CaSiO3 wollastonite were measured by high-temperature calorimetry using molten 2PbO · B2O3 solvent at 974 K. The obtained values were extrapolated linearly to the CaSiO3 end member to give ΔH drop-sol of CaSiO3 perovskite of 0.2 ± 4.4 kJ mol−1. The difference in ΔH drop-sol between CaSiO3, wollastonite, and perovskite gives a transformation enthalpy (wo → pv) of 104.4 ± 4.4 kJ mol−1. The formation enthalpy of CaSiO3 perovskite was determined as 14.8 ± 4.4 kJ mol−1 from lime + quartz or −22.2 ± 4.5 kJ mol−1 from lime + stishovite. A comparison of lattice energies among A2+B4+O3 perovskites suggests that amorphization during decompression may be due to the destabilizing effect on CaSiO3 perovskite from a large nonelectrostatic energy (repulsion energy) at atmospheric pressure. By using the formation enthalpy for CaSiO3 perovskite, phase boundaries between β-Ca2SiO4 + CaSi2O5 and CaSiO3 perovskite were calculated thermodynamically utilizing two different reference points [where ΔG(P,T )=0] as the measured phase boundary. The calculations suggest that the phase equilibrium boundary occurs between 11.5 and 12.5 GPa around 1500 K. Its slope is still not well constrained. Received: 20 September 2000 / Accepted: 17 January 2001  相似文献   

15.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

16.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

17.
 The structure and bonding in azurite are investigated on the basis of accurate single-crystal X-ray diffraction data. Both spherical IAM and pseudoatom models have been used in the refinements. The deformation electron density: dynamic (IAM) and static (pseudoatom) are mapped for the CO3 group and for Cu(1) and Cu(2) squares in different sections. The carbonate group in azurite, not constrained to have trigonal symmetry, exhibits peaks in both static and dynamic maps which result from σ-bonds between C–sp2 hybrid orbitals and O–p orbitals with some delocalisation of density in the dynamic map because of the thermal motion of oxygens. For the analysis of crystal fields and for the multipole calculations, coordinate systems on the Cu-atoms have been chosen as for a Jahn-Teller octahedron, but with the normal to the square as the z-axis instead of the absent apical oxygens. In both Cu squares there are peaks which result from single Cu–O σ-bonds. Most remarkable is the preferential occupation of the non-bonding 3d orbitals of Cu-atoms being above and below the Cu-squares. The centre of these peaks for the Cu(1)-atom makes an angle with the c-axis ∼53° in the ac plane. This direction corresponds to the maximum magnetic susceptibility at ambient temperature. The real atomic charges of Cu-atoms in azurite determined from multipoles are close to Cu+1. The occupancies of the 3d atomic orbitals show that non-bonding orbitals in both Cu-atoms are most populated, in contrast to bonding orbitals, as is typical for the Jahn-Teller octahedron. The absence of apical oxygens makes this effect even more pronounced. It is suggested that the antiferromagnetic structure below 1.4 K will be collinear and commensurate with b′=2b. Received: 8 September 2000 / Accepted: 6 March 2001  相似文献   

18.
An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800 °C and 1.5 kb with natural granite as the starting material. The effects of the solutions on the partition coefficients of tungsten show a sequence of P > CO 3 2− > B > H2O. The effects are limited (generallyK D < 0.3) and the tungsten shows a preferential trend toward the melt over the aqueous fluid. The value ofK D increases with increasing concentration of phosphorus; theK D increases first and then reduces with the concentration of CO 3 2− when temperature decreases, theK D between the solution of CO 3 2− and the silicate melt increases, and that between the solution of B4O 7 2− and the silicate melt decreases. The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts. TheK D value for phosphorus is 0.38 and that for sodium is 0.56. Evidence shows that the elements tend to become richer and richer in the melts.  相似文献   

19.
We have investigated the geochemistry of supraglacial streams on the Canada Glacier, Taylor Valley, Antarctica during the 2001–2002 austral summer. Canada Glacier supraglacial streams represent the link between primary precipitation (i.e. glacier snow) and proglacial Lake Hoare. Canada Glacier supraglacial stream geochemistry is intermediate between glacier snow and proglacial stream geochemistry with average concentrations of 49.1 μeq L−1 Ca2+, 19.9 μeq L−1 SO42−, and 34.3 μeq L−1 HCO3. Predominant west to east winds lead to a redistribution of readily soluble salts onto the glacier surface, which is reflected in the geochemistry of the supraglacial streams. Western Canada Glacier supraglacial streams have average SO42−:HCO3 equivalent ratios of 1.0, while eastern supraglacial streams average 0.5, suggesting more sulfate salts reach and dissolve in the western supraglacial streams. A graph of HCO3 versus Ca2+ for western and eastern supraglacial streams had slopes of 0.87 and 0.72, respectively with R2 values of 0.84 and 0.83. Low concentrations of reactive silicate (> 10 μmol L−1) in the supraglacial streams suggested that little to no silicate weathering occurred on the glacier surface with the exception of cryoconite holes (1000 μmol L−1). Therefore, the major geochemical weathering process occurring in the supraglacial streams is believed to be calcite dissolution. Proglacial stream, Anderson Creek, contains higher concentrations of major ions than supraglacial streams containing 5 times the Ca2+ and 10 times the SO42−. Canada Glacier proglacial streams also contain higher concentrations (16.6–30.6 μeq L−1) of reactive silicate than supraglacial streams. This suggests that the controls on glacier meltwater geochemistry switch from calcite and gypsum dissolution to both salt dissolution and silicate mineral weathering as the glacier meltwater evolves. Our chemical mass balance calculations indicate that of the total discharge into Lake Hoare, the final recipient of Canada Glacier meltwater, 81.9% is from direct glacier runoff and 19.1% is from proglacial Andersen Creek. Although during a typical, low melt ablation season Andersen Creek contributes over 40% of the water added to Lake Hoare, its overall chemical importance is diluted by the direct inputs from Canada Glacier during high flow years. Decadal warming events, such as the 2001–2002 austral summer produce supraglacial streams that are a major source of water to Lake Hoare.  相似文献   

20.
The normal modes of vibration and their frequencies are calculated for dioptase, a mineral whose crystal structure (space group R or C 3i 2 ) consists of puckered six-membered silicate rings (Si6O18) linked by Cu2+ ions and H2O groups. The calculation employs a valence force potential consisting of central interactions between nearest neighbors and bond-bending interactions centered at the Si4+ and Cu2+ ions. The force constants are determined by fitting the calculated frequencies to values obtained by measuring the single-crystal Raman spectra. The calculated frequencies are in reasonable agreement with experiment, permitting assignment of normal modes to the observed spectral frequencies. Considerable mixing of Cu and H2O motions with those of the ring is found for the Raman-active modes below 430 cm-1. The normal modes and frequencies of the hypothetical isolated ring with C 3i symmetry are determined by neglecting all interactions between the rings and the surrounding Cu and H2O. The identification of normal modes characteristic of the puckered six-membered silicate rings and the effect of the environment on these modes may prove useful in the interpretation of the Raman spectra of amorphous silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号