首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Radiocarbon dates from critical stratigraphic localities in southern British Columbia indicate that the growth history of the late Wisconsin Cordilleran Ice Sheet was different from that of most of the Laurentide Ice Sheet to the east. Much of southern British Columbia remained free of ice until after about 19,000 to 20,000 yr ago; only adjacent to the Coast Mountains is there a record of lowland glacier tongues in the interval 22,000 to 20,000 yr B.P. A major advance to the climax of late Wisconsin Cordilleran glacier ice in the northern States was not begun until after about 18,000 yr B.P. in the southwest of British Columbia and after about 17,500 yr B.P. in the southeast. The rate of glacier growth must have been very rapid in the two to three millennia prior to the climax, which has been dated in western Washington at shortly after 15,000 yr B.P.  相似文献   

2.
The Cordilleran Ice Sheet (CIS) covered much of the mountainous northwestern part of North America at least several times during the Pleistocene. The pattern and timing of its growth and decay are, however, poorly understood. Here, we present a reconstruction of the pattern of ice‐sheet retreat in central British Columbia at the end of the last glaciation based on a palaeoglaciological interpretation of ice‐marginal meltwater channels, eskers and deltas mapped from satellite imagery and digital elevation models. A consistent spatial pattern of high‐elevation (1600–2400 m a.s.l.), ice‐marginal meltwater channels is evident across central British Columbia. These landforms indicate the presence of ice domes over the Skeena Mountains and the central Coast Mountains early during deglaciation. Ice sourced in the Coast Mountains remained dominant over the southern and east‐central parts of the Interior Plateau during deglaciation. Our reconstruction shows a successive westward retreat of the ice margin from the western foot of the Rocky Mountains, accompanied by the formation and rapid evolution of a glacial lake in the upper Fraser River basin. The final stage of deglaciation is characterized by the frontal retreat of ice lobes through the valleys of the Skeena and Omineca Mountains and by the formation of large esker systems in the most prominent topographic lows of the Interior Plateau. We conclude that the CIS underwent a large‐scale reconfiguration early during deglaciation and was subsequently diminished by thinning and complex frontal retreat towards the Coast Mountains.  相似文献   

3.
The glacial geomorphology of the Waterville Plateau (ca. 55 km2) provides information on the dynamics of the Okanogan Lobe, southern sector of the Cordilleran Ice Sheet in north‐central Washington. The Okanogan Lobe had a profound influence on the landscape. It diverted meltwater and floodwater along the ice front contributing to the Channeled Scabland features during the late Wisconsin (Fraser Glaciation). The glacial imprint may record surge behaviour of the former Okanogan Lobe based on a comparison with other glacial landsystems. Conditions that may have promoted instability include regional topographic constraints, ice marginal lakes and dynamics of the subglacial hydrological system, which probably included a subglacial reservoir. The ice‐surface morphology and estimated driving stresses (17–26 kPa) implied from ice thickness and surface slope reconstructed in the terminal area also suggest fast basal flow characteristics. This work identifies the location of a fast flowing ice corridor and this probably affected the stability and mass balance of the south‐central portion of the Cordilleran Ice Sheet. Evidence for fast ice flow is lacking in the main Okanogan River Valley, probably because it was destroyed during deglaciation by various glacial and fluvial processes. The only signature of fast ice flow left is the imprint on the Waterville Plateau. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Lian, O. B. & Hicock, S. R. 2009: Insight into the character of palaeo‐ice‐flow in upland regions of mountain valleys during the last major advance (Vashon Stade) of the Cordilleran Ice Sheet, southwest British Columbia, Canada. Boreas, 10.1111/j.1502‐3885.2009.00123.x. ISSN 0300‐9483. A detailed glacial geological study was done on Vashon till, formed during the last (Fraser) glaciation, in upland areas of two relatively short and narrow mountain valleys which open onto the Fraser Lowland in southwest British Columbia. The orientation and association of glaciotectonic structures in till and bedrock, a‐axis fabrics of stones in till and abrasion features, indicate that Vashon till formed initially by lodgement and that brittle deformation processes dominated at least during the latter stages of glaciation. The presence of local glacigenic bedrock quarrying suggests that ice flow experienced localized enhanced compressive flow along valley sides. These observations indicate that ice flow was relatively slow and they contrast with a previous study of bedrock geomorphology undertaken in some larger south Coast Mountains valleys and a model of ice‐flow velocity in the Puget Lowland that suggest rapid ice flow. This indicates that either ice‐flow conditions in the larger valleys were different from those in the valleys studied here, or that the observations from our study reflect subglacial conditions following the Last Glacial Maximum (LGM), but immediately prior to deglaciation when ice had thinned and slowed. If the latter scenario is correct, and if processes inferred from this study were also common along the upland parts of other southwest Coast Mountains valleys after the LGM, then the rate at which ice was supplied to lowland piedmont glaciers would have been reduced, and this may have accelerated decay of the southwest margin of the last Cordilleran Ice Sheet.  相似文献   

5.
David J.A.  Chris D.  Wishart A. 《Earth》2005,70(3-4):253-312
This paper reviews the evidence presently available (as at December 2003) for the compilation of the Glacial Map of Britain (see [Clark C.D., Evans D.J.A., Khatwa A., Bradwell T., Jordan C.J., Marsh S.H., Mitchell W.A., Bateman, M.D. , 2004. Map and GIS database of glacial landforms and features related to the last British Ice Sheet. Boreas 33, 359–375] and http://www.shef.ac.uk/geography/staff/clark_chris/britice.html) in an effort to stimulate further research on the last British Ice Sheet and promote a reconstruction of ice sheet behaviour based on glacial geology and geomorphology. The wide range of evidence that has been scrutinized for inclusion on the glacial map is assessed with respect to the variability of its quality and quantity and the existing controversies in ice sheet reconstructions. Landforms interpreted as being of unequivocal ice-marginal origin (moraines, ice-contact glacifluvial landforms and lateral meltwater channels) and till sheet margins are used in conjunction with available chronological control to locate former glacier and ice-sheet margins throughout the last glacial cycle. Subglacial landforms (drumlins, flutings and eskers) have been used to demarcate former flow patterns within the ice sheet. The compilation of evidence in a regional map is crucial to any future reconstructions of palaeo-ice sheet dynamics and will provide a clearer understanding of ice sheet configuration, ice divide migration and ice thickness and coverage for the British Ice Sheet as it evolved through the last glacial cycle.  相似文献   

6.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

7.
The Liard Lobe formed a part of the north‐eastern sector of the Cordilleran Ice Sheet and drained ice from accumulation areas in the Selwyn, Pelly, Cassiar and Skeena mountains. This study reconstructs the ice retreat pattern of the Liard Lobe during the last deglaciation from the glacial landform record that comprises glacial lineations and landforms of the meltwater system such as eskers, meltwater channels, perched deltas and outwash fans. The spatial distribution of these landforms defines the successive configurations of the ice sheet during the deglaciation. The Liard Lobe retreated to the west and south‐west across the Hyland Highland from its local Last Glacial Maximum position in the south‐eastern Mackenzie Mountains where it coalesced with the Laurentide Ice Sheet. Retreat across the Liard Lowland is evidenced by large esker complexes that stretch across the Liard Lowland cutting across the contemporary drainage network. Ice margin positions from the late stage of deglaciation are reconstructed locally at the foot of the Cassiar Mountains and further up‐valley in an eastern‐facing valley of the Cassiar Mountains. The presented landform record indicates that the deglaciation of the Liard Lobe was accomplished mainly by active ice retreat and that ice stagnation played a minor role in the deglaciation of this region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
During decay of the Cordilleran Ice Sheet, ˜13 000–10000 cal. yr BP, numerous ice-dammed, ribbon-shaped lakes developed within the moderately deep valleys of the Interior Plateau of British Columbia. We describe the pattern and characteristics of lake sediments within the Thompson Valley, propose a palaeoenvironmental model for glacial lakes Thompson and Deadman and explore their implications for the palaeogeography of Cordilleran Ice Sheet decay. Seventeen glaciolacustrine lithofacies are identified within deltas, subaqueous fans and lake-bottom beds. Sediments accumulated at high rates and by a diversity of sediment dispersal and depositional processes: hyperpycnal and surge-type turbidity currents, grain flows and debris flows. Megascale subaqueous failures (tens of metres thick) were facilitated by high sedimentation rates. The palaeoenvironmental model highlights: (i) high rates of basin infilling; (ii) the dominant role of tributary rivers, rather than valley-occupying ice, in delivering water and sediment to lakes; and (iii) the role of melt cycles, jökulhlaups and hyperpycnal flows in sediment delivery. These conditions, in combination with a lack of organics and a fining upward sequence in lake sediments, suggest that glacial lakes Thompson and Deadman were coeval with dwindling plateau ice.  相似文献   

10.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

11.
The British Isles have been the focus of a number of recent modelling studies owing to the existence of a high‐quality sea‐level dataset for this region and the suitability of these data for constraining shallow earth viscosity structure, local to regional ice sheet histories and the magnitude/timing of global meltwater signals. Until recently, the paucity of both glaciological and relative sea‐level (RSL) data from Ireland has meant that the majority of these glacial isostatic adjustment (GIA) modelling studies of the British Isles region have tended to concentrate on reconstructing ice cover over Britain. However, the recent development of a sea‐level database for Ireland along with emergence of new glaciological data on the spatial extent, thickness and deglacial chronology of the Irish Ice Sheet means it is now possible to revisit this region of the British Isles. Here, we employ these new data to constrain the evolution of the Irish Ice Sheet. We find that in order to reconcile differences between model predictions and RSL evidence, a thick, spatially extensive ice sheet of ~600–700 m over much of north and central Ireland is required at the LGM with very rapid deglaciation after 21 k cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

13.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

14.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

15.
The glacial geomorphological record provides an effective means to reconstruct former ice sheets at ice sheet scale. In this paper we document our approach and methods for synthesising and interpreting a glacial landform record for its palaeo-ice flow information, applied to landforms of Ireland. New, countrywide glacial geomorphological maps of Ireland comprising >39,000 glacial landforms are interpreted for the spatial, glaciodynamic and relative chronological information they reveal. Seventy one ‘flowsets’ comprising glacial lineations, and 19 ribbed moraine flowsets are identified based on the spatial properties of these landforms, yielding information on palaeo-ice flow geometry. Flowset cross-cutting is prevalent and reveals a highly complex flow geometry; major ice divide migrations are interpreted with commensurate changes in the flow configuration of the ice sheet. Landform superimposition is the key to deciphering the chronology of such changes, and documenting superimposition relationships yields a relative ‘age-stack’ of all Irish flowsets. We use and develop existing templates for interpreting the glaciodynamic context of each flowset – its palaeo-glaciology. Landform patterns consistent with interior ice sheet flow, ice stream flow, and with time-transgressive bedform generation behind a retreating margin, under a thinning ice sheet, and under migrating palaeo-flowlines are each identified. Fast ice flow is found to have evacuated ice from central and northern Ireland into Donegal Bay, and across County Clare towards the south-west. Ice-marginal landform assemblages form a coherent system across southern Ireland marking stages of ice sheet retreat. Time-transgressive, ‘smudged’ landform imprints are particularly abundant; in several ice sheet sectors ice flow geometry was rapidly varying at timescales close to the timescale of bedform generation. The methods and approach we document herein could be useful for interpreting other ice sheet histories. The flowsets and their palaeo-glaciological significance that we derive for Ireland provide a regional framework and context for interpreting results from local scale fieldwork, provide major flow events for testing numerical ice sheet models, and underpin a data-driven reconstruction of the Irish Ice Sheet that we present in an accompanying paper – Part 2.  相似文献   

16.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

17.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   

18.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

19.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号