首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
测绘学   2篇
大气科学   1篇
地球物理   17篇
地质学   22篇
海洋学   38篇
天文学   11篇
自然地理   15篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2011年   4篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   4篇
  1975年   4篇
  1973年   1篇
  1968年   1篇
  1958年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
The Laurentide Ice Sheet was characterized by a dynamic polythermal base. However, important data and knowledge gaps have led to contrasting reconstructions in areas such as the Labrador Ice Divide. In this study, detailed fieldwork was conducted at the southeastern edge of a major landform boundary to resolve the relative ice flow chronology and constrain the evolution of the subglacial dynamics, including the migration and collapse of the Labrador Ice Divide. Surficial mapping and analysis of 94 outcrop‐scale ice flow indicators were used to develop a relative ice flow chronology. 10Be exposure ages were used with optical ages to confine the timing of deglaciation within the study area. Four phases of ice flow were identified. Flow 1 was a northeasterly ice flow preserved under non‐erosive subglacial conditions associated with the development of an ice divide. Flow 2 was a northwest ice flow, which we correlate to the Ungava Bay Ice Stream and led to a westward migration of the ice divide, preserving Flow 2 features and resulting in Flow 3's eastward‐trending indicators. Flow 4 is limited to sparse fine striations within and around the regional uplands. The new optical ages and 10Be exposure ages add to the regional geochronology dataset, which further constrains the timing of ice margin retreat in the area to around 8.0 ka. Copyright © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   
2.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   
3.
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges.  相似文献   
4.
This paper presents the first integrated macroscale and microscale examination of subglacial till associated with the last‐glacial (Fraser Glaciation) Cordilleran Ice Sheet (CIS). A new statistical approach to quantifying till micromorphology (multivariate hierarchical cluster analysis for compositional data) is also described and implemented. Till macrostructures, macrofabrics and microstructures support previous assertions that primary till in this region formed through a combination of lodgement and deformation processes in a temperate subglacial environment. Macroscale observations suggest that subglacial environments below the CIS were probably influenced by topography, whereby poor drainage of the substrate in topographically constricted areas, or on slopes adverse to the ice‐flow direction at glacial maximum, facilitated ductile deformation of the glacier bed. Microscale observations suggest that subglacial till below the CIS experienced both ductile and brittle deformation, including grain rotation and squeeze flow of sediment between grains under moist conditions, and microshearing, grain stacking and grain fracturing under well‐drained conditions. Macroscale observations suggest that ductile deformation events were probably followed by brittle deformation events as the substrate subsequently drained. The prevalence of ductile‐type microstructures in most till exposures investigated in this study suggests that ductile deformation signatures can be preserved at the microscale after brittle deformation events that result in larger‐scale fractures and shear structures. It is likely that microscale ductile deformation can also occur within distributed shear zones during lodgement processes. Cluster analysis of microstructure data and qualitative observations made from thin sections suggest that the relative frequency of countable microstructures in this till is influenced by topography in relation to ice‐flow direction (bed drainage conditions) as well as by the frequency and distribution of voids in the till matrix and skeletal grain shapes.  相似文献   
5.
Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes. Particularly the process of dune splitting is still poorly understood and – as a result – not yet included in operational dune evolution models. In the current paper, the process of dune splitting is investigated by carrying out laboratory experiments and by means of a sensitivity analysis using a numerical dune evolution model. In the numerical model, we introduced superimposed TRIAS ripples (i.e. triangular asymmetric stoss side‐ripples) on the stoss sides of underlying dunes as soon as these stoss sides exceed a certain critical length. Simulations with the model including dune splitting showed that predictions of equilibrium dune characteristics were significantly improved compared to the model without dune splitting. As dune splitting is implemented in a parameterized way, the computational cost remains low which means that dune evolution can be calculated on the timescale of a flood wave. Subsequently, we used this model to study the mechanism of dune splitting. Literature showed that the initiation of a strong flow separation zone behind a superimposed bedform is one of the main mechanisms behind dune splitting. The flume experiments indicated that besides its height also the lee side slope of the superimposed bedform is an important factor to determine the strength of the flow separation zone and therefore is an important aspect in dune splitting. The sensitivity analysis of the dune evolution model showed that a minimum stoss side length was required to develop a strong flow separation zone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Book review     
  相似文献   
8.
A parallel force/position controller is proposed for the control of loads through the wave zone in marine operations. The controller structure has similarities to the parallel force/position control scheme used in robotics. The parallel force/position controller is tested for crane control in simulations and model experiments and the results are presented in this paper. To evaluate the performance of the proposed controller, we study three different control strategies for control of loads through the wave zone: active heave compensation, wave synchronization, and parallel force/position control. The parallel force/position controller gave improved results, in particular, a significant improvement of the minimum value of the wire tension, which is important to avoid snatch loads that may break the wire. The three strategies are tested and compared in simulations and experiments  相似文献   
9.
The glacial geomorphology of the Waterville Plateau (ca. 55 km2) provides information on the dynamics of the Okanogan Lobe, southern sector of the Cordilleran Ice Sheet in north‐central Washington. The Okanogan Lobe had a profound influence on the landscape. It diverted meltwater and floodwater along the ice front contributing to the Channeled Scabland features during the late Wisconsin (Fraser Glaciation). The glacial imprint may record surge behaviour of the former Okanogan Lobe based on a comparison with other glacial landsystems. Conditions that may have promoted instability include regional topographic constraints, ice marginal lakes and dynamics of the subglacial hydrological system, which probably included a subglacial reservoir. The ice‐surface morphology and estimated driving stresses (17–26 kPa) implied from ice thickness and surface slope reconstructed in the terminal area also suggest fast basal flow characteristics. This work identifies the location of a fast flowing ice corridor and this probably affected the stability and mass balance of the south‐central portion of the Cordilleran Ice Sheet. Evidence for fast ice flow is lacking in the main Okanogan River Valley, probably because it was destroyed during deglaciation by various glacial and fluvial processes. The only signature of fast ice flow left is the imprint on the Waterville Plateau. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
Olav L. Hansen 《Icarus》1975,26(1):24-29
Infrared (1.5–5 μm) albedos and rotation curves of the Galilean satellites have been obtained. The data suggest that the rotational variation in the infrared is less than ±10% for all four satellites. While no conclusion about rotational variation could be reached for Io, the 1.57 μm data for the outer three satellites marginally suggest phase correlation with the visual variation. The geometric albedos obtained are in general agreement with earlier results. For Io, the absorption feature near 1.5 μm found by Pilcher et al. (1972) is confirmed, thus contradicting the flat spectrum measured by Fink et al. (1973). Io and Ganymede were observed in the 1.57 μm bandpass as they reappeared from eclipse. The curve for Io shows a slight (<10%) overshoot similar to those sometimes reported for visual measurements. This result is based on a single reappearance, and is extremely tentative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号