首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinctive compositional features of cyclic saturated hydrocarbon biomarkers have been established in oils from the main petroliferous lithostratigraphic complexes of various structural zones in the Timan-Pechora petroliferous province (TPPP). Four geochemical families (types) of oils in TPPP are recognized based on the variations in the geochemical parameters of steranes and terpanes including sterane ratios C27/C29 and C28/C29, K1 mat and K2 mat, diasterane/regular sterane, pregnane (C21–22)/sterane (C21–22 + C27–29), as well as terpane Ts/Tm parameters, adiantane C29/hopane C30, neoadiantane/adiantane, tryciclic terpane/pentacyclic terpane, hopane/sum of C29 steranes, etc. The distribution of various types of oil in the sedimentary sequence of TPPP makes it possible to infer source rocks for each of the four selected types.  相似文献   

2.
《Organic Geochemistry》1999,30(8):985-1010
The Buller Coalfield (South Island, New Zealand) is an inverted late Paleogene Basin that contains middle Eocene bituminous coals which exhibit considerable variation in both coal rank (across-basin), and coal type (in-seam). Twenty-two fractionated bitumen extracts of Brunner Coal Measures coal samples from 12 drillholes were analyzed by GC and GC–MS to characterize the effect of coal rank and type on conventional hydrocarbon maturity indices at the beginning and end of the oil window (0.56–1.26% Romax).The Carbon Preference Index, pristane/phytane and isoprenoid/n-alkane ratios evolve throughout the high volatile bituminous B rank stage, while other biomarker ratios [18α(H)-22,29,30-trisnorneohopane/17α(H)-22,29,30-trisnorhopane (Ts/Tm), 18α(H),21β(H)-30-norneohopane (C29 Ts)/17α(H),21β(H)-30-norhopane and C30 diahopane/hopane] do not show appreciable change in value until medium volatile bituminous rank. Various aromatic based ratios appear to be more effective in delineating rank throughout the entire oil window; in particular the Methylphenanthrene Index and vitrinite reflectance are positively correlated over the entire bituminous rank range. However, subtle changes in depositional conditions (variable coal type) complicate these rank estimates. Within a given coal seam, variation in CPI, isoprenoid/n-alkane and hopane/sterane ratios appear to be related to the hydrogen content of the coal, while the homohopane index and the oleanane/hopane ratio covary with sulfur content. As with depressed vitrinite reflectance values, MPI is similarly lowered in the perhydrous samples. The mechanisms that control these hydrocarbon parameters during deposition and diagenesis are complex and convoluted, however, changes in bacterial activity and community (with marine incursion) appear to play an important role. Due to these anomalies, none of the hydrocarbon maturity indices calculated can be singularly used to constrain coal rank.  相似文献   

3.
The Qinjiatun and Qikeshu oilfields are new Mesozoic petroleum exploration targets in Lishu Fault Depression of Songliao Basin, northeastern China. Currently, researches on geochemistry of crude oils from Qinjiatun and Qikeshu oilfields have not been performed and the genesis of oils is still uncertain. Based on bulk analyses, the crude oils in the Qinjiatun and Qikeshu oilfields of Lishu Fault Depression from the Lower Cretaceous can be classified as three types. TypeⅠoils, from Quantou and Denglouku formations of Qikeshu oilfield, are characterized by high C24tetracyclic terpane/C26tricyclic terpanes ratios, low gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29norhopane ratios and 17α(H)-diahopane/17α(H)-hopane ratios, indicating a brackish lacustrine facies. TypeⅡoils, from Shahezi Formation of Qikeshu oilfield show low C24tetracyclic terpane/C26tricyclic terpanes, high gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29 norhopane and C30diahopane/C30hopane ratios, thus suggesting that they originated from source rocks deposited in a weak reducing brackish lacustrine environment, or clay-rich sediments. Type oilsⅢ, from some wells of Qikeshu oilfield have geochemical characteristics intermediate between those two types and may be mixture of typeⅠand Ⅱoils.  相似文献   

4.
The black shale samples collected from two Neogene formations in the Klias Peninsula area, West Sabah, have been assessed and characterized in details by gas chromatography, gas chromatography-mass spectrometry and a variety of organic geochemical parameters. The aims of this study are to describe the characteristics of organic matter of these sediments in terms of source/type of the organic matter, assess its thermal maturity and paleoenvironment of deposition, based primarily on biomarker distributions. The results of both formations do not reveal significant differences within the rock extracts. The gas chromatograms of the saturated hydrocarbon fractions of the Setap Shale and the Belait formations displayed monomodal n-alkane distributions and nearly identical regular sterane compositions with a predominance of C27 regular steranes. These are consistent with open marine depositional environments dominated by marine biological matter. Another related feature of these rock extracts is the presence of a high relative abundance of gammacerane, indicating anoxic marine hypersaline source depositional environment. The relatively high abundance of common land plant-derived biomarkers, such as bicadinanes and oleananes, is a clear indication of a major terrigenous input to the source of the extractable organic matter. The predominance of oleanane biomarkers in both formations is indicative of angiospermis input and Tertiary source rocks. The high C29/C30 hopane ratios, moderate development of C33–C35 hopanes, high abundance of tricyclic terpanes and a slight predominance of C27 regular sterane over C28 and C29 steranes are characteristic features tending to suggest a significant marine influence on these source rocks, thereby suggesting a mixed source input. The 22S/(22S+22R)C32 hopane ratio has reached equilibrium, and this is supported by the high maturity level as indicated by the 22S/22SC31–33 extended hopane ratios and 20S/(20S+20R)C29 regular steranes ratios.  相似文献   

5.
This study deals with a detailed geochemical characterization of three crude oils from the Upper Indus Basin, Punjab, Pakistan. The samples were obtained from three productive oil fields of the Datta Formation (Jurassic), Lochhart (Palaeocene) and the Dhak Pass zone (Palaeocene). The GC parameters for and the bulk properties of Datta Formation oils are essentially coincident with those of the oils from the Dhak Pass Formation in the Upper Indus Basin, Pakistan and the oils likely originate from a marine source rock. In contrast, the Lockhart Formation oils show different behaviors and seem to be originated from dirty carbonate rocks although all three crude oils are mature, being of non-biodegraded and somewhat mixed organic matter origin. Low Pr/Ph values and high C35 homohopane index for the Lockhart Formation oils suggest a source of anoxic environment with low Eh while oils from the Datta Formation and Dhak Pass Formation showed different trends, i.e., lower values of C35 homohopane index indicating different depositional environment than oil from the Lockhart Formation. All three crude oils from the Upper Indus Basin are mature for the hopane ratios, i.e., Ts/Ts+Tm, C3222S/(S+R) and C30 αβ/(αβ+βα) and sterane ratios, i.e., C2922S/(S+R) and C29ββ/(ββ+αα) but oils from the Lockhart Formation seem to be less mature than those from the Palaeocene and Datta Formation according to plots like API° vs. homohopane Index, Pr/Ph vs. sterane. The relative composition of 5α(H), 14β(H), 17β(H)-24-ethylecholestanes and the C2920S/20S+20R index, indicate that all three crude oils are equally mature, which makes it unlikely with respect to the above said plots. This difference is may be due to the migratory chromatography which alters the concentrations of sterane and hoapnes and hence gives different results. These oils do not exhibit UCM and have complete n-alkane profiles indicating non-biodegradation.  相似文献   

6.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

7.
A sequence of Lower Toarcian sediments which are highly contrasting in their depositional environment over a 5 m depth interval has been investigated in detail for the variability of geochemical properties which are used for source characterization and oil-to-source correlation. Lower Liassic marls are representative of a well-aerated shallow-water environment in contrast to the immediately overlying bituminous shales which are deposited under extremely reducing conditions. Various properties have been found to vary considerably within these two units. Amongst the most important are carbon isotopic composition of the kerogen, the pristane/phytane ratios, nickel as opposed to vanadyl porphyrins, and the C27 dia-/regular steranes. Although maturation within the profile does not change, some of the maturation-dependent biomarker properties such as the monoaromatic steroid side-chain cracking and the Tm/Ts ratio exhibit large changes which can be assigned to diagenetic processes. Another maturation-dependent property, the 20S/20R epimerization of C29 steranes, exhibits smaller changes which could also be due to early diagenetic processes. The study suggests that reducing and oxidizing conditions, i.e. Eh and pH in the sediment, exert an influence on several biomarker precursor-product pathways. In maturation studies initial variations due to depositional conditions have therefore to be taken into account.  相似文献   

8.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

9.
《Applied Geochemistry》2005,20(10):1875-1889
Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C11–C17) and even-to-odd (C18–C28) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango’s K1 values in the saline oils are highly variable (0.99–1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C28 sterane abundance (30% or more of C27–C29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (−24‰ to −26‰) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57–0.87) in the saline oils and source rocks confirm a Tertiary organic source.  相似文献   

10.
Steroids with unconventional side chains have increasingly been applied as diagnostic markers for geological source and age assessments. However, one of the most distinctive characteristics, the abnormal abundance of pregnane and homopregnane in ancient sediments and petroleum, remains unresolved. Higher pregnane and homopregnane, as well as C23–C26 20-n-alkylpregnanes, relative to the regular steranes were observed in samples collected from different petroleum basins in China. These included Precambrian marine carbonate-derived petroleum (NW Sichuan Basin), Lower Paleozoic marine marl derived crude oils (Tarim Basin), and Eocene hypersaline lacustrine carbonate source rocks and associated petroleum (Bohai Bay Basin). However, all of the samples have many common biomarker characteristics, such as pristane/phytane ratios < 1, low amounts of diasteranes and high C29/C30 hopane (∼0.6–1), C35/C34 hopane (mostly  1) and dibenzothiophene/phenanthrene (DBT/PHEN, mostly 0.5–1) ratios revealing a contribution from anoxic carbonate/marl source rocks deposited in restricted, clastic-starved settings. We suggest that 5α,l4β,l7β-pregnane and homopregnane, as well as their higher C23–C26 homologues, are geological products derived from steroids bound to the kerogen by a sulfurized side chain. Carbon or carbonate minerals are considered to be natural catalysts for this cracking reaction via preferential cleavage of the bond between C-20 and C-22. Similar distributions occur in the short chain analogues of 4-methylsterane, triaromatic steroid and methyltriaromatic steroid hydrocarbons, providing circumstantial evidence for this proposal. The ratio of pregnane and homopregnane to the total regular steranes and the ratio of C27 diasteranes to cholestanes can be sensitive indicators of sedimentary environments and facies. In general, high diasteranes and low pregnanes (with homologues) indicate an oxic water column or significant input of terrigenous organic matter in clay rich source rocks and some organic lean carbonate rocks. Low diasteranes with high pregnanes implies restricted, sulfur rich conditions, typical of anoxic carbonate source rocks. Furthermore, the two ratios may be useful to assess the variation of mineralogy and openness of source rock depositional settings.  相似文献   

11.
通过采集鄂尔多斯盆地西南缘4个剖面奥陶系马家沟群碳酸盐岩和平凉组泥页岩样品,对其中可溶有机质饱和烃与芳烃组分进行GC-MS分析,对比研究了马家沟群碳酸盐岩和平凉组泥页岩生物标志化合物特征。结果表明,马家沟群与平凉组正构烷烃分布形式及峰型特征、生物标志化合物参数Pr/Ph、伽马蜡烷/C30-αβ藿烷、C20-29三环萜烷/(C20-29三环萜烷+C27-35藿烷),以及甲基菲指数(MPI)均存在明显差异,这些差异反映了其沉积环境与成熟度的不同,对于马家沟群与平凉组来源油的识别具有参考价值。马家沟群正构烷烃分布形式与甾/藿比值以及C28/C29ααα20R甾烷比值之间的对应关系,反映了母质输入的细微差别。Ts/(Ts+Tm)与伽马蜡烷/C30-αβ藿烷比值之间的关系,C29甾烷αββ/(αββ+ααα)比值变化与重排藿烷与重排甾烷丰度的关系,反映上述成熟度参数明显受沉积环境影响。  相似文献   

12.
China has a number of petroliferous lacustrine sedimentary basins of varying salinity and age (mainly Eocene). A geochemical investigation has been undertaken on several oils and source rocks from the Eocene lacustrine Biyang Basin. The distributions of n-alkanes, isoprenoids, steranes, and terpanes have been studied and used to characterize the sedimentary environment of deposition, maturity, biodegradation and undertake possible correlations. The ratios of C30-hopane/gammacerane, 4-methyl-steranes/regular steranes, steranes/hopanes, C21 tricyclic/C30 hopane are proposed to be indicative of the depositional environment whereas ß-carotane appears to be a source related indicator. The geochemical data obtained in this study suggest that the major source rocks in the Biyang Basin were deposited in a saline/hypersaline depositional environment.  相似文献   

13.
Biomarker and n-alkane compound specific stable carbon isotope analyses (CSIA) were carried out on 58 crude oil samples from shallow water and deepwater fields of the Niger Delta in order to predict the depositional environment and organic matter characteristics of their potential source rocks. Using a source organofacies prediction approach from oil geochemistry, the presence in the western deepwater oils relatively abundant C27 steranes, C30 24-n-propyl cholestane, low oleanane index, relatively low pr/ph ratios, gammacerane, and positive to nearly flat C12–C30 n-alkane compound specific stable carbon isotope profiles, suggests that the source facies that expelled these oils contain significant marine derived organic matter deposited under sub-oxic and stratified water column conditions. This contrasts with the terrigenous organic matter dominated source rocks accepted for shallow water Niger Delta oils. Oils in the shallow water accumulations can be separated into terrigenous and mixed marine-terrigenous families. The terrigenous family indicates expulsion from source rock(s) containing overwhelmingly higher plant source organic matter (average oleanane index = 0.48, high C29 steranes) as well as having negative sloping n-alkane isotope profiles. Oxic source depositional conditions (pr/ph > 2.5) and non-stratified conditions (absence to low gammacerane content) are inferred for the terrigenous family. The mixed marine-terrigenous family has biomarker properties that are a combination of the deepwater and terrigenous shallow water oils. Bitumen extracts of the sub-delta Late Cretaceous Araromi Formation shale in the Dahomey Basin are comparable both molecularly and isotopically to the studied western deepwater oil set, but with an over all poor geochemical correlation. This poor geochemical match between Araromi shale and the western deepwater oils does not downgrade the potential of sub-delta Cretaceous source rock contribution to the regional oil charge in the deepwater Niger Delta.  相似文献   

14.
Surma Group is the most important geological unit of Bengal basin, Bangladesh, because petroleum resources occur within this group. It is mainly composed of alternation of shale and sandstone and the shale fraction has long been considered as source rocks and the sandstone fraction as reservoir. These source and reservoir rocks have been studied by different authors by different approach but none of them adopted organic geochemistry and organic petrology as a means of study of source rock and their possible depositional environment. A total of thirty shale core samples have been collected from eight different gas fields to fulfill the short coming. The collected samples have been subjected to Source Rock Analysis (SRA) and/or Rock-Eval (RE) followed by pyrolysis gas chromatography (PyGC), gas chromatography mass spectrometry (GCMS), elemental analysis (EA) and organic petrological study such as vitrinite reflectance measurement and maceral analysis. The analyzed organic matter extracted from the shales of Surma Group consists mainly of Type III along with some Type II kerogen. The studied shales are mostly organically lean (TOC ±1%) and the extracted organic matter is fair to moderate. Based on these results, the analyzed shales have been ranked as poor (mostly) to fair quality source rock. The organic matter of the analyzed shale samples is thermally immature to early mature for hydrocarbon generation considering their Tmax and measured mean vitrinite reflectance values. The hopane 22S/(22S + 22R), moretane/hopane ratio and sterane parameters are also in good agreement with these thermal maturity assessments. The predominance of odd carbons over even carbons (most common) and/or even carbons over odd carbon numbered n-alkanes, moderate Pr/Ph ratio, low to high Tm/Ts ratio, comparative abundance of sterane C29 (i.e., C29 >C27>C28), Pr/nC17 — Ph/nC18 values, C/S ratio and dominance of vitrinite macerals group with the presence of liptinite macerals demonstrate that the organic matter has derived mainly from terrestrial inputs with an insignificant contribution from the marine sources. The condition of deposition alternates from oxic to anoxic.  相似文献   

15.
《Organic Geochemistry》1987,11(2):103-113
Four novel hexacyclic alkanes, fairly common in crude oils and rock extracts from evaporitic series, have been tentatively identified on the basis of GC/MS data as C32, C33, C34 and C35 hexahydrobenzohopanes. These structures, only recorded in carbonate-anhydrite sequences, i.e. very anoxic paleoenvironments, tend to concentrate when pristane to phytane ratios increase. Changes in their relative concentration to αβ hopanes appear to be more related to variations in source and/or environmental conditions than to maturity. The ratio of the novel hexacylic C35 hopane to C35 αβ hopane, compared with other biomarker ratios, suggests that hexacyclic alkanes and hopanes are byproducts of the same hopanoid precursors via different chemical reactions. In addition the novel hexacyclic alkanes are bacterially resistant and may serve as a useful family to define the paleoenvironment (viz. very anoxic) of the parent source rock of a drastically biodegraded oil.  相似文献   

16.
通过对罗子沟盆地大砬子组上段油页岩干酪根镜检、热解、GC 和GC-MS 等分析,并对其有机地球化学多项特征参数进行研究,讨论罗子沟油页岩有机地化特征及其地质意义。根据姥植比及伽马蜡烷、孕甾烷、重排甾烷、重排藿烷等参数特征分析,推测油页岩形成的古湖泊水体性质为淡水--微咸水的还原沉积环境。综合分析显微组分镜检和热解结果及甾烷( C27--C29 ) 分布等参数,认为研究区油页岩有机质主要为混合母源输入。依据热解、Ro、甾烷和C31 升藿烷异构化程度、C29 莫烷/C29 藿烷、 Ts 与Tm 相对含量比值等指标的对比,指出研究区油页岩处于未熟- 低熟热演化阶段。  相似文献   

17.
Twenty-seven heavy crude oils of diverse origin were geochemically assessed with respect to both bulk and mlecular composition for the purpose of identifying and quanttfying valid biomarker parameters for low maturity oils. The low thermal maturity level of many of these oils is evident from the bulk and alipathic chromatographic data, and oil sourced from both marine and terrigenous organic matter are represented. Selective metastable ion monitoring (SMIM) was employed to measure separately the distribution of C27, C28, and C29 sterane isomers. The useful maturity indicators include the C29 5α(H) 20S/20R ratio, the relative quantity of the biological sterane configuration in each of the total normal C27, C28, and C29 steranes, and the rearranged to normal sterane ratio. In addition, C27 rearranged steran es appear to form at a faster rate than C28 or C29 rearranged steranes. However, the isomerization of the C27 biological component appears to occur at a slower rate than the C29 counterpart suggesting that the former may be used as a maturity parameter at higher levels of thermal maturation. In the triterpane distributions, the C27 trisnorhopane isomers and the moretane to hopane ratios appear to be both source and maturity related and cannot be used as successful maturity parameters in oils unless they share a common source. The C31+ hopane 22S/22R equilibrium ratio appears to increase with increasing molecular weight (C31–C34).  相似文献   

18.
Analyses of some Australian crude oils show that many contain varying concentrations of A/ B-ring demethylated hopanes. These range from C26 to C34 and have been identified from their retention times and mass spectral data as 17α(H)-25-norhopanes. Comparison of hopane and demethylated hopane concentrations and distributions in source-related, biodegraded oils suggests that demethylated hopanes are biotransformation products of the hopanes. Further, it appears that the process occurs at a late stage of biodegradation, after partial degradation of steranes has occurred. Demethylated hopanes are proposed as biomarkers for this stage of severe biodegradation. The presence of these compounds in apparently undegraded crude oils is thought to be due to the presence of biodegraded crude oil residues which have been dissolved by the undegraded crude oil during accumulation in the reservoir sands. The timing of hopane demethylation, relative to the degradation of other compounds, has been assessed and the progressive changes in crude oil composition with increasing extent of biodegradation have been identified. The use of demethylated hopanes as maturity parameters for severely biodegraded crude oils, and the applicability of established biomarker maturity parameters to such oils, are also discussed.  相似文献   

19.
The Sylhet Basin of Bangladesh is a sub-basin of the Bengal Basin. It contains a very thick (up to 22 km) Tertiary stratigraphic succession consisting mainly of sandstones and mudstones. The Sylhet succession is divided into the Jaintia (Paleocene–late Eocene), Barail (late Eocene–early Miocene), Surma (middle–late Miocene), Tipam (late Miocene–Pliocene) and Dupitila Groups (Pliocene–Pleistocene), in ascending order. The origin of the organic matter (OM) and paleoenvironment of deposition have been evaluated on the basis of C, N, S elemental analysis, Rock-Eval pyrolysis and gas chromatography–mass spectrometry (GC–MS) analysis of 60 mudstone samples collected from drill core and surface outcrops. Total organic carbon (TOC) content ranges from 0.11% to 1.56%. Sulfur content is low in most samples. TOC content in the Sylhet succession varies systematically with sedimentation rate, with low TOC caused by clastic dilution produced by high sedimentation rates arising from rapid uplift and erosion of the Himalaya.The OM in the succession is characterized by systematic variations in pristane/phytane (Pr/Ph), oleanane/C30 hopane, n-C29/n-C19 alkane, Tm/Ts [17α(H)-22,29,30-trisnorhopane/18α(H)-22,29,30-trisnorhopane] and sterane C29/(C27 + C28 + C29) ratios during the middle Eocene to Pleistocene. Based on biomarker proxies, the depositional environment of the Sylhet succession can be divided into three phases. In the first (middle Eocene to early Miocene), deposition occurred completely in seawater-dominated oxic conditions, with abundant input of terrestrial higher plants, including angiosperms. The second phase (middle to late Miocene) consisted of mainly freshwater anoxic conditions along with a small seawater influence according to eustasic sea level change, with diluted OM derived from phytoplankton and a lesser influence from terrestrial higher plants. Oxygen-poor freshwater conditions prevailed in the third phase (post-late Miocene). Planktonic OM was relatively abundant in this stage, while a high angiosperm influx prevailed at times. Tmax values of ca. 450 °C, vitrinite reflectance (Ro) of ca. 0.66% and methylphenanthrene index (MPI 3) of ca. 1 indicate the OM to be mature. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC content and predominantly terrestrial OM could have generated some condensates and oils in and around the study area.  相似文献   

20.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号