首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin (‘flysch’) phase during late Eocene–Oligocene times, followed by post-Oligocene (‘molasse’) phase of shallow marine shelf progradation to present day.Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene–Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ∼19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500–2600 m of missing section, equivalent to a time gap of 8–10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah.Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene–Miocene Sarawak foreland basin.  相似文献   

2.
Lower Pleistocene sediments recovered in boreholes from the Aberdeen Ground Formation in the central North Sea indicate that the unit was deposited in a delta front to prodelta/shallow, open shelf marine setting. Possible estuarine and clastic nearshore marine deposits have been identified on the western margin of the basin. The delta front sediments consist of interbedded, structureless to laminated sands and muds with organic debris, ferruginous nodules and common soft sediment deformation structures. Sporadic rippled and graded beds, basal scours to beds and starved ripples suggest periodic wave–current reworking. Prodelta/shelf marine sediments are predominantly argillaceous with only occasional thin sand beds and rare phosphatic bands. One exceptionally thick sand body or submarine channel-fill although this remains uncertain. The estuarine/clastic nearshore marine sediments include coarse channel-lag deposits and rippled and laminated subtidal sands. A rich microfossil assemblage recovered from the prodelta/shelf marine sequence indicates that deposition occurred under fluctuating climatic conditions.  相似文献   

3.
A detailed analysis of depositional history of Miocene sediments and various effects which are governed for creation of accommodation space as well as the processes of sedimentation inherent to the depositional system at that period is described in this work. The early Miocene clastic sediments are deposited in prograding environment where sediment supply exceeds the accommodation space available. The accommodation space created due to basin subsidence and source area upliftment due to local and regional tectonic activity in the basin. In the early Miocene time, the Assam shelf major transgression occurred and several minor transgression followed. There was wide spread deposition of the fluvial Tipam sandstones. In Miocene time due to thrust loading and flexure subsidence, accommodation space was created for deposition of the sediments. The Tipam Sandstone is deposited by cyclic deposition of fining upward sequence in a fluvial to brackish water environment of braided river processes. The mechanism of braided rivers is also discussed in which it laterally expanded, leaving sheet like or wedge — shaped deposits of channel and bar complexes preserving only minor amounts of flood plain material.  相似文献   

4.
The Argillite Sequence located at the base of the sedimentary cover on the continental slope of the Sea of Japan was studied by petrographic, palynological, and X-ray diffraction methods. Two spores-pollen complexes were distinguished in it: the Late Oligocene reflecting cooling and the Early Miocene corresponding to initiated warming. The data obtained indicate that the sequence is composed of terrigenous silty-clayey sediments that accumulated in shallow coastal-marine settings. The global sea-level rise at the Early-Middle Miocene transition, combined with the regional tectonic processes, determined the basin deepening, owing to which the argillite sequence was overlain by thick Middle Miocene diatomaceous-clayey sediments. Due to tectonic movement along existing faults in the terminal Late Miocene, the argillite sequence occurring initially at depths of at least 400–500 m was locally exhumed to the basin bottom.  相似文献   

5.
ILFRYN PRICE 《Sedimentology》1977,24(4):529-546
The Othris Mountains of eastern Greece contain a calcareous continental margin/ocean basin sequence exposed in a stack of Cretaceous thrust sheets. Upper Triassic to Lower Cretaceous shelf, submarine fan and basinal successions overlie shallow marine units of Lower Triassic and Permian age. In off-shelf sequences the older sediments are separated from the younger by a horizon of alkaline ‘early-rifting’ basalts. Ophiolites overthrust the marginal sequence. Pre-rifting sediments are represented by a varied suite of limestones and clastics resting on metamorphic basement and include distinctive, green lithic arenites. In the thrust sheet immediately over the para-autochthonous shelf sequence, pre-rifting sediments are separated from the rift basalts by an intermittent horizon of calcareous sandstones and conglomerates reworked from uplifted basement and older sediments. Textural and petrographic immaturity suggests that these are probably deposits derived from fault scarps, produced in an early phase of rifting. Above the basalts in the same sheet is a suite of calciclastic sediment-gravity-flow deposits, apparently sedimented on a submarine fan. Progressive downslope modification of calcirudites suggests deposition from evolving, high concentration flows. Massive calcarenite facies (? grain flows) are unusually abundant; a possible reflection of a shallow palaeo-shelf break since provenance and palaeocurrent evidence proves the clastic carbonates to have been derived from a calcareous shelf. In addition to limestone lithoclasts the calcirudites, but not the massive calcarenites, contain fragments of pre-rifting lithologies including the distinctive arenites. Since the shelf sequence in Othris is totally nondetrital these clasts imply derivation of coarse sediment from an off-shelf position; probably the walls of a submarine canyon. This may have occurred either by direct erosion of wall rock, or by reworking of material from an older clastic sequence. In the latter case the inferred fault-scarp deposits are a likely source.  相似文献   

6.
The Lower Silurian siliciclastic Coralliferous Group is shown to have been deposited in an intra‐shelf position 10–15 km south of the palaeogeographic shelf‐break of the Welsh Basin. After a phase of thermal subsidence related to the development of the predominantly Llandovery Skomer Volcanic Group, the shelf basin was transgressed. This transgression was punctuated by an episode of tectonic uplift in southern Pembrokeshire, resulting in subaerial exposure of the shelf and a significant basinward shift in sedimentary environments. Erosion and sediment bypass ensued, with coarse‐grained low‐sinuosity fluvial channels transporting sediment to the northerly Welsh Basin, where significant submarine fans developed. During the early Telychian, renewed transgression took place, with lowstand gravels being ravined and reworked into parasequences of the transgressive systems tract. These thin, coarse‐grained parasequences record deposition within high‐energy wave‐dominated shoreface/inner shelf environments. Further coastal onlap resulted in the closing down of significant coarse‐grained sediment supply, with the remaining Coralliferous Group being dominated by wave‐influenced silts, mud‐shales and thin sandstones comprising the highstand systems tract. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and post-rift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Oligocene alluvial-fan, braidedriver, and floodplain deposits; (2) Upper Oligocene to Lower Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) an Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase.

The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor (β) varies from 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor (5) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. The stretching of the lithosphere may have extended the basement rocks by as much as 45 to 90 km and has led to passive upwelling of the aesthenosphere, resulting in high heat flow (1.9 to 2.5 Heat Flow Units [HFU]) and high geothermal gradient (45 to 60° C/km). The validity of nonuniform lithospheric stretching as a mechanism for the formation of the Pattani Basin is confirmed by the good agreement between the level of organic maturation modeled on the basis of the predicted heatflow history and measured vitrinite reflectance at various depths measured in some 30 boreholes.  相似文献   

8.
以珠江口盆地白云凹陷钻井、测井、地震和古生物资料为基础,结合前人研究成果,系统的分析了白云凹陷晚渐新统到早中新统沉积相发育特征及凹陷沉积充填演化过程。研究结果表明,珠海组下部发育大型陆架边缘三角洲沉积,地震反射特征表明该三角洲发育三期;钻遇水下分支河道、支流间湾、河口坝及远砂坝微相,沉积物以富砂为特征,发育冲刷-充填构造、递变层理及较粗的水平潜穴等多种构造;珠海组上部为浅海相,沉积物以海相砂泥岩互层为主,此时期陆架坡折带位于白云凹陷南坡;珠江组沉积时期,海平面升降旋回频繁,陆架坡折带迁至凹陷北坡。随着古珠江流域扩大,沉积物输入量增加,在珠江组下部发育了深水扇,沉积物以细-粗砂岩为主,夹少量粉砂岩及深海泥岩,发育颗粒流、液化流、浊流及碎屑流等四种主要的重力流,钻遇内扇水道,中扇废弃水道及水道间漫溢沉积,外扇深海泥沉积;珠江组上部为半深海相,沉积物以深海泥岩为主。   相似文献   

9.
The ca 300 m thick Guaso system is the youngest part of the ca 4 km thick deep-marine fill of the Middle Eocene Ainsa basin, Spanish Pyrenees. It is overlain by 150 to 200 m of fine-grained slope, prodelta and deltaic sediments. The ca 25 discrete deep-marine sandbodies within the Ainsa basin accumulated over ca 10 Myr, making eustasy the most likely control for coarse sand deposition (probably the ca 400 kyr Milankovitch mode). The first-order control on basin-scale accommodation, however, was tectonically-driven subsidence. Previously, the Guaso sandbodies were interpreted as linked to deep erosional, canyon-like features, but here it is argued that they are laterally extensive sandbodies, built by lateral-switching of 3 to 10 m deep erosional channels, and confined only by basin structure during deposition. The Guaso system represents the end of deep-marine deposition in a structurally-confined, delta-fed, low-gradient clastic system. The critical end-signature of deep-marine deposition was a phase of differential tectonic uplift above the underlying (Boltaña) thrust creating a narrower and shallower basin morphology, thus allowing sedimentation to create a low-gradient clastic system. Then, the next eustatic sea-level fall was insufficient to permit the cutting of canyons or deeply-incised slope channels, as had been the case earlier when the topographic relief between shelf and basin was at least several hundred metres greater. Such low-gradient clastic systems may characterize the end-signature for the infill of other shallowing-up deep-marine basins where a tectonic driver on subsidence is removed and/or differential uplift/subsidence leads to reduced sea floor gradients, leaving eustasy and sediment flux as the principal control on sediment supply.  相似文献   

10.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

11.
Sandy turbidites, grain flows, conglomeratic mass-flows and oxide-facies iron formation are present in the late Archaean Beardmore-Geraldton terrain, a metasedimentary belt which extends for at least 80 km in an E-W direction. The marine portion of this basin contains four lithofacies associations (LA): (1) Thinbedded, iron formation-clastic sediment association. This association represents a continuum of deposit types containing iron formation; subtypes are defined on the basis of bedding attributes and the proportion of iron formation to sand/silt. (2) Thin-bedded, turbidite-dominated association. These sediments consist mostly of silt/sand beds which either show no vertical trends, or thin and fine upwards over a few metres. (3) Medium-bedded, turbidite-dominated association. Most of these sediments are medium to coarsegrained, vertically unstructured sand sequences with occasional structured intervals. (4) Thick-bedded association. This is dominated by poorly graded sands up to 7–8 m in thickness. Sand beds are characterised by a thin basal zone of coarse sand and pebbles, a large central interval containing a mixture of medium and coarse sand, and a thin upper zone of fine sand/silt. The overall depositional system was initiated by transport of sediment by braided streams to the strand area where it accumulated in distributary mouth bars. We infer a nearshore break in slope, locally with large channels (LA 4) extending from close to the strand line across deltaic surfaces to the deeper portions of submarine fans (structured portions of LA 3). However, many deltaic surfaces probably were not tapped by major channels, but merged downslope into a submarine ramp. Sediment was transported across the ramp by slump events and sheet-like grain flows (unstructured portions of LA 3). Iron formation and LA 2 sediments probably accumulated both in upper-mid ramp areas with low sediment delivery rates, and distal to fan-ramp successions. As major streams on the braid plain changed position, associated submarine channels and slump-fed ramp deposits also would have shifted laterally. This produced overlap of different facies associations in both the fan and ramp environments, which may explain why observed vertical trends in bedding are limited to several metres. We suggest that on narrow, active Archaean cratonic margins, additional non-regular processes such as variations in sediment supply related to periods of heightened pyroclastic activity, and seismic activity associated with the arc, also contributed to the lack of vertically structured sequences. Turbidite sequences in such environments in general may contain important contributions from both submarine ramp and submarine fan sedimentation.  相似文献   

12.
李林  张成  闫春  杨涛涛  解习农  王少凯  储生明 《地球科学》2021,46(10):3707-3716
海底重力滑动系统研究对认识海底斜坡稳定性和深水沉积过程具有重要意义.南海北部琼东南盆地华光凹陷上中新统及其以上地层中发育一个大型的自南向北滑动的海底重力滑动系统.利用区域二维地震资料,查明了该大型海底重力滑动系统的地震相和发育特征,探讨了其可能的形成原因.该海底重力滑动系统由伸展域、过渡域、收缩域、滑动面和软弱层等5个要素构成;其发育演化可划分为晚中新世前重力滑动、上新世同重力滑动和第四纪后重力滑动等3个阶段:前重力滑动为物质准备阶段,水道复合体沉积于半深海泥质斜坡之上,为重力滑动提供物质基础;同重力滑动为重力滑动系统发育的主体阶段,沉积物披盖在强烈变形而产生的地形上,同时也发生一定程度的变形;后重力滑动为重力滑动系统萎缩阶段,沉积物逐渐将重力滑动产生的凸凹地形填平,并继续沉积.斜坡地形和高沉积物供给是海底重力滑动系统发育的基础;基底断层活化和底辟作用可能是触发其发育的动力源.   相似文献   

13.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

14.
The Naturaliste Plateau is a submarine continental ribbon rifted from the southwest Australian margin during the Early Cretaceous breakup of East Gondwana. It occupied a key position near the juncture of Greater India and the boundary between Australia and Antarctica. However, details of the Early Cretaceous evolution of the plateau are not well known because of limited data. Drilling at Site U1513 during IODP Expedition 369 recovered the first complete Lower Cretaceous succession on the eastern Naturaliste Plateau. The succession includes syn-rift volcanic rocks, Hauterivian to early Aptian volcaniclastic-rich sedimentary rocks, and Albian claystone strata. The 235-m thick volcaniclastic-rich sequence represents the missing post-breakup record in the southwest Australian rifted margin. It spans the transition from syn- to post-rift phase during the final stages of breakup between Greater India and Australia-Antarctica. We report the lithological, petrophysical, geochemical, paleontological, and paleomagnetic characteristics of the sequence, and then synthesize the results to define the Early Cretaceous depositional environment and subsidence history of the Naturaliste Plateau. From the early Hauterivian, weathered volcanic products were eroded and re-deposited locally as a volcaniclastic-rich sequence, with a major contribution from the southern Naturaliste Plateau. The depositional environment evolved from a shelf to upper bathyal condition during the Hauterivian through early Barremian with a decreasing sedimentation rate. This period is defined as a late syn-rift subsidence phase by NW-SE trending extension. After the final breakup with Greater India, the plateau remained at upper bathyal depths with little deposition until the early Aptian. Mid–lower bathyal depths inferred from the Albian claystone strata suggest that the post-rift thermal subsidence commenced during the late Aptian. This two-phase post-rift subsidence reflects the proximity or high temperature of mantle plume, possibly the Kerguelen plume, and its westward migration relative to the southwest Australian rifted margin.  相似文献   

15.
《International Geology Review》2012,54(16):2030-2059
Seismic and sequence stratigraphic analysis of deep-marine forearc basin fill (Great Valley Group) in the central Sacramento Basin, California, reveals eight third-order sequence boundaries within the Cenomanian to mid-Campanian second-order sequences. The third-order sequence boundaries are of two types: Bevelling Type, a relationship between underlying strata and onlapping high-density turbidites; and Entrenching Type, a significantly incised surface marked by deep channels and canyons carved during sediment bypass down-slope. Condensed sections of hemipelagic strata draping bathymetric highs and onlapped by turbidites form a third important type of sequence-bounding element, Onlapped Drapes. Five tectonic and sedimentary processes explain this stratigraphic architecture: (1) subduction-related tectonic tilting and deformation of the basin; (2) avulsion of principal loci of submarine fan sedimentation in response to basin tilting; (3) deep incision and sediment bypass; (4) erosive grading and bevelling of tectonically modified topography by sand-rich, high-density turbidite systems; and (5) background hemipelagic sedimentation. The basin-fill architecture supports a model of subduction-related flexure as the principal driver of forearc subsidence and uplift during the Late Cretaceous. Subduction-related tilting of the forearc and growth of the accretionary wedge largely controlled whether and where the Great Valley turbiditic sediments accumulated in the basin. Deeply incised surfaces of erosion, including submarine canyons and channels, indicate periods of turbidity current bypass to deeper parts of the forearc basin or the trench. Fluctuations in sediment supply likely also played an important role in evolution of basin fill, but effects of eustatic fluctuations were overwhelmed by the impact of basin tectonics and sediment supply and capture. Eventual filling and shoaling of the Great Valley forearc during early Campanian time, coupled with dramatically reduced subsidence, correlate with a change in plate convergence, presumed flat-slab subduction, cessation of Sierran arc volcanism, and onset of Laramide orogeny in the retroarc.  相似文献   

16.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic.In the rifting stage,the margin received lacustrine and shallow marine facies sediments.In the post-rifting thermal subsidence,the margin accumulated shallow marine facies and hemipelagic deposits,and the decpwater basins formed.Petroleum systems of deepwater setting have been imaged from seismic data and drill wells.Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea.The deepwater reservoirs are characterized by the deep sea channel fill,mass flow complexes and drowned reef carbonate platform.Profitable capping rocks on the top are mudstoues with huge thickness in the post-rifting stage.Meanwhile,the faults developed during the rifting stage provide a migration path favournble for the formation of reservoirs.The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta,decpwater submarine fan sandstone and reef carbonate reservoirs.  相似文献   

17.
深水水道沉积构型及其演化一直是沉积学界研究的热点。基于Rio Muni盆地深水区470 km2高分辨率三维地震数据,在精细地震解释的基础上,对研究区发育的深水水道的沉积构型、演化进行探讨。主要取得4点认识:(1)深水水道的弯曲度主要受控于物源供给和海底坡度,研究区发育弯曲水道、顺直水道2类深水水道;(2)起源于陆架边缘的深水水道,物源供给相对充分,弯曲度高,其剖面往往不对称,水道壁发育滑塌或阶地,垂向演化具有侧向迁移特征,发育废弃水道;(3)而起源于中上陆坡的深水水道,其弯曲度低,剖面具有U形特征,水道壁光滑无滑塌或阶地, 主要以垂向加积为主。由于物源供给不足,顺直水道逐渐被深海泥质披覆沉积充填;(4)同一条深水水道,由上陆坡向下陆坡,随着海底坡度的降低,其弯曲度呈增大趋势。  相似文献   

18.
The wide Lacepede Shelf and narrow Bonney Shelf are contiguous parts of the south-eastern passive continental margin of Australia. The shelves are open, generally deeper than 40 m, covered by waters cooler than 18°C and swept by oceanic swells that move sediments to depths of 140 m. The Lacepede Shelf is proximal to the ‘delta’of the River Murray and the Coorong Lagoon. Shelf and upper slope sediments are a variable mixture of Holocene and late Pleistocene quartzose terrigenous clastic and bryozoa-dominated carbonate particles. Bryozoa grow in abundance to depths of 250 m and are conspicuous to depths of 350 m. They can be grouped into four depth-related assemblages. Coralline algae, the only calcareous phototrophs, are important sediment producers to depths of 70 m. Active benthic carbonate sediment production occurs to depths of 350 m, but carbonate sediment accumulation is reduced on the open shelf by continuous high energy conditions. The shelf is separated into five zones. The strandline is typified by accretionary sequences of steep shoreface, beach and dune carbonate/siliciclastic sediments. Similar shoreline facies of relict bivalve/limestone cobble ridges are stranded on the open shelf. The shallow shelf, c.40–70 m deep, is a wide, extremely flat plain with only subtle local relief. It is a mosaic of grainy, quartzose, palimpsest facies which reflect the complex interaction of modern bioclastic sediment production (dominated by bryozoa and molluscs), numerous highstands of sea level over the last 80 000 years, modern mixing of sediments from relatively recent highstands and local introduction of quartz-rich sediments during lowstands. The middle shelf, c.70–140 m deep, is a gentle incline with subtle relief where Holocene carbonates veneer seaward-dipping bedrock clinoforms and local lowstand beach complexes. Carbonates are mostly modern, uniform, clean, coarse grained sands dominated by a diverse suite of robust to delicate bryozoa particles produced primarily in situ but swept into subaqueous dunes. The deep shelf edge, c. 140–250 m deep, is a site of diverse and active bryozoa growth. Resulting accumulations are characteristically muddy and distinguished by large numbers of delicate, branching bryozoa. The upper slope, between 250 and 350 m depth, contains the deepest platform-related sediments, which are very muddy and contain a low diversity suite of delicate, branching cyclostome bryozoa. This study provides fundamental environmental information critical for the interpretation of Cenozoic cool water carbonates and the region is a good model for older mixed carbonate-terrigenous clastic successions which were deposited on unrimmed shelves.  相似文献   

19.
Based on the latest submarine topography data of the China 908 Project (China offshore marine environmental comprehensive investigation and assessment),we analyzed the general China offshore submarine topographical characteristics and the factors influencing its development.The submarine topography off the coast of China follows the NW-SE trend of the land topography.The gradient of the submarine topography ranges from 0.2% to 1.6% with an average gradient of about 0.8%.The depth contours run mostly parallel to the coast,and extend out to sea in estuary areas.The submarine topography is dominated by the geological structure,which shows the typical characteristics of two uplifts and two subsidence events from north to south.The geological structure combined with the different sedimentary environments and complex hydrodynamic conditions produced topography that can be characterized by three types:sedimentary basins,compressionuplift,and transition form.In the sedimentary basin and compression-uplift regions,the topographical undulation is small,sediments are fine-grained,and the currents flow in a single direction,leading to bays with sedimentary plains and underwater accumulation slopes,which are of the same tectonic origin.Transition-type topography is characterized by strong undulations and mixed-size sediment particles,terraces and scarps inshore and shelf plains and erosion-deposition landforms offshore.This is a result of incomplete fault block development and repeated transgressions.In the deposition reformation regions (transition form type),the topography has strong undulations,the sediments are coarse,tidal sand ridges are well-developed at terrigenoussupplied estuaries and convergence zones,and the Holocene sediments are thick,transformed by tides,river runoff,and currents.  相似文献   

20.
The Middle Marker is a thin (3–6 m) sedimentary unit at the base of the Hooggenoeg Formation in the 3.4 Ga old Onverwacht Group, Barberton Mountain Land, South Africa. The original sediments consisted largely of current-deposited volcaniclastic detritus now represented by green to buff-colored silicified volcaniclastic rock and fine-grained gray chert. Black chert, possibly formed by the silicification of a non-volcaniclastic precursor, makes up a significant part of the unit. The Middle Marker is underlain and overlain by mafic and commonly pillowed volcanic flowrock. Although the original sediment has been replaced by and/or recrystallized to a microquartz, chlorite, sericite, carbonate and iron oxide mosaic under lower greenschist-grade metamorphism, sedimentary textures and structures are remarkably well preserved. Textural pseudomorphs indicate the primary volcaniclastic sediment consisted of a mixture of crystal, vitric and lithic debris. Middle Marker sediments were deposited as a prograding, cone-flanking volcaniclastic sedimentary platform in a relatively-shallow and locally current/wave-influenced subaqueous sedimentary environment. Available paleocurrent data indicate a largely bimodal, orthogonal distribution pattern which is quite similar to both ancient and modern shallow marine/shelf systems. Diagnostic evidence for tidal activity is lacking. As felsic volcanic activity waned, an extensive airfall blanket of fine-grained volcanic ash and dust was deposited in a low-energy subaqueous environment. The sedimentary cycle was terminated with a renewal of submarine mafic volcanism. Middle Marker volcaniclastic sediments accumulated in an anorogenic basin removed or isolated from the influence of continental igneous and metamorphic terranes. Although compositionally dominated by a volcanic source, Middle Marker sediments owe their final texture and sedimentary structures to subaqueous sedimentary rather than volcanogenic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号