首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
位于青藏高原东北缘的西宁、贵德盆地的新生代沉积序列较完整的记录了盆地周围物源区构造变形过程。重矿物是碎屑物质的重要组成部分,是最直观、有效揭示源区母岩、构造-沉积过程的重要手段。通过重矿物的系统分析,结合沉积-构造变形,揭示出始新世-上新世末西宁-贵得盆地及其源区经历了几个构造活动阶段:古新世-始新世早期的隆升阶段、始新世中期-渐新世晚期的构造稳定阶段、渐新世末-中新世初的构造隆升阶段、中中新世构造稳定阶段和晚中新世以来的强烈隆升阶段。并结合特征矿物(绿泥石)及古水流分析,推断古近纪西宁-贵德盆地是东昆仑山前一个统一盆地。中新世早期青藏高原的扩张导致了拉脊山开始隆起,使原型盆地解体;约8.5 Ma以来拉脊山强烈隆升,两侧盆地逐渐转变为山间盆地。这为正确理解青藏高原东北缘盆山格局的形成和演化提供了重要依据。  相似文献   

2.
Structural and morphological analysis of the Miocene sediments that build up the Mekenzievi rock sequence at the Fiolent Cape made it possible to define the major characteristics of its inner structure. The largely homogeneous carbonate sediments are composed of clinoform complexes and bodies that fill in erosion paleochannels. The Mekenzievi rock sequence was formed under tectonic activity in the basin with intensive hydrodynamics. Most of the Mekenzievi rock sequence is dated as Early Chokrakian.  相似文献   

3.
东海盆地中、新生代盆架结构与构造演化   总被引:6,自引:0,他引:6  
基于地貌、钻井、岩石测年和地震等资料,分析盆地地层分布、盆架结构、构造单元划分和裂陷迁移规律,结果表明东海盆地由台北坳陷、舟山隆起、浙东坳陷、钓鱼岛隆褶带和冲绳坳陷构成,是以新生代沉积为主、中生代沉积为辅的大型中、新生代叠合含油气盆地;古元古代变质岩系构成了盆地的基底。该盆地不仅是印度-太平洋前后相继的动力体系作用下形成的西太平洋沟-弧-盆构造体系域一部分,而且也是古亚洲洋动力体系作用下形成的古亚洲洋构造域和特提斯洋动力体系作用下形成的特提斯洋构造域一部分,晚侏罗世至早白垩世经历了构造体制转换,盆地格局发生重大变革,早白垩世以前主要受古亚洲-特提斯洋构造体制影响的强烈挤压造山和地壳增厚作用演变为早白垩世以来主要受太平洋构造体制控制的陆缘伸展裂陷和岩石圈减薄作用,经历侏罗纪古亚洲-特提斯构造体制大陆边缘拗陷和白垩纪以来太平洋构造体制弧后裂陷两大演化阶段。白垩纪以来太平洋构造体制的弧后裂陷演化阶段可细分为早白垩世至始新世裂陷期、渐新世至晚中新世拗陷期和中新世末至全新世裂陷期。  相似文献   

4.
天水盆地是一个位于青藏高原东北缘的晚新生代盆地,西秦岭北缘断裂穿盆而过。盆地内充填了较为完整的晚新生代地层,记录了该区晚新生代以来的构造变形历史,对研究青藏高原北东向扩展的构造响应具有重要意义。本文基于详细的野外构造变形分析与测量,结合已有的年代学与沉积学研究,初步提出天水盆地晚新生代以来构造变形序列与构造应力场,重建其晚新生代构造演化历史。详细研究表明,天水盆地晚新生代以来主要经历了3期构造演化:即中新世早-晚期NW-SE向构造伸展,沉积盆地发育,并伴随碱性超基性火山岩喷发和金刚石矿床形成;中新世晚期-早、中更新世NE-SW向挤压,盆地发生构造反转,其动力学背景可能源于晚新生代青藏高原的北东向扩展,指示高原物质扩散开始显著影响到西秦岭地区;晚更新世以来受近N-S向伸展作用控制,盆地发生向东有限挤出并伴随顺时针旋转,主要由于青藏高原向北东扩展过程中,区域构造挤压应力方向发生顺时针偏转所致。  相似文献   

5.
青藏高原东缘新生代构造层序与构造事件   总被引:28,自引:7,他引:28       下载免费PDF全文
新生代龙门山前盆地和盐源盆地是青藏高原东缘龙门山-锦屏山冲断带内及前缘地区发育和保存最好的新生代沉积盆地,本次以地层不整合面和ESR测年资料为主要依据,将该区新生代构造地层序列划分为5个构造层序,即TS1(65-55Ma)、TS2(40-50Ma)、TS3(23-16Ma)、TS4(4.7-1.6Ma)和TS5(0.74-0Ma),据此将青藏高原东缘新生代构造变形和隆升事件划分为5期,其中TS1与喜马拉雅地体和拉萨地体拼合事件相关,TS2与印亚碰撞事件相关,TS3与青藏高原第一次隆升事件相关,TS4与青藏高原第二次隆升事件相关,TS5与青藏高原第三次隆升事件相关。  相似文献   

6.
Relics of a thick, widely spread, fluvial sequence of Early Miocene age are scattered throughout southern Israel, eastern Sinai, the Dead Sea Rift Valley and the western margins of the Jordanian Plateau. These relics are mainly preserved in structural lows, karstic systems, and abandoned stream valleys. The paleogeography of this fluvial system was reconstructed based on the relations between the sequence remnants and the main structural and morphological features of the southeastern Levant region.Three sedimentary associations were identified in the Miocene sequence: a lower part dominated by locally derived clastic sediments; a thicker middle part, composed mostly of far-field allochthonous clastic sediments; and an upper part composed of local as well as allochthonous sediments. The two lower parts are regionally distributed whereas the upper part is syn-tectonic and confined to the Dead Sea basin and the Karkom graben in the central Negev. The composition of the far-field allochthonous sediments points to a provenance of Precambrian crystalline rocks of the Arabo-Nubian massif that were exposed along the uplifted shoulders of the Red Sea Rift as the upper drainage basin of the fluvial system. The diverse mammal remains found in this fluvial sequence suggest a complex of savanna, forests and fluvial habitats similar to those of present East Africa, with monsoon-type rains, which were the dominant water source of the rivers.The thickness of the Miocene sequence in the central Negev is at least 1700 m, similar to that of the subsurface sequence encountered in the Dead Sea basin. This similarity suggests that both were parts of an extensive subsiding sedimentary basin that developed between the Neo-Tethys and the uplifted margins of the Red Sea.The relations between the reconstructed pre-depositional landscape of southern Israel during the Early Miocene and the overlying fluvial sequence indicate that the entire area was buried under several hundred meters of fluvial sediments, reflecting a subsidence of the northern margins of the African continent (Arabian plate) before its breakup and the splitting of the Sinai–Israel subplate by the Dead Sea Transform.During the early Middle Miocene the subsidence was inversed as the mountainous backbone of Israel was uplifted. The uplift triggered a large scale denudation that removed the thick Early Miocene fluvial sequence from the Negev and transported the eroded sediments northwestward toward the eastern Mediterranean basin. Additional uplift during the late-Middle Miocene was associated with entrenchment of the Be’er Sheva Valley between the Judea Mountains in the north and the Negev Highlands in the south. This valley was flooded by the sea during the Late Miocene.We suggest that the formation of the Early Miocene subsiding basin at the northern edge of the Arabian sub-plate predated the breakup of the Arabian plate by the DST. The inversion of the subsiding regime, which led to the establishment of the Negev Highlands seems to be intimately related to the detachment of the Sinai–Israel sub-plate from the Arabian plate during the Middle Miocene.  相似文献   

7.
通过对南海西北次海盆新获得的地震资料进行综合解释和层序地层分析,揭示了海盆中的沉积对构造演化阶段的响应。始新世-早渐新世陆缘裂陷期,盆地以对称裂谷形式,发育地堑裂谷层序,沉积以近物源为特征,相变大,发育了冲积扇-扇三角洲-湖相沉积,沉积体系的配置受同沉积断裂控制明显,快速沉降和充分的物源供给决定了沉积体系的构成特征。晚渐新世海底扩张期,岩石圈破裂,陆缘进一步拉开并开始海底扩张,出现海相沉积,来自陆坡的陆架边缘三角洲越过陆坡进入海盆,在海盆内沉积了一套向海盆中部逐渐减薄的楔状地层,并伴有大量的火山碎屑沉积物。早-中新世以来热沉降期,随着构造沉降增大,相对海平面总体不断上升,进入深水盆地,形成陆架陆坡体系,大量的碎屑物质以重力流、深水底流等深水作用方式进入海盆;沉降晚期陆架-陆坡物源供应减弱,琼东南中央峡谷成为其主要的物质供应来源通道,在此期间二次海平面下降、回升的综合作用下,海盆内发育了多期以下切水道为特征的低水位域沉积体系。  相似文献   

8.
晚第三纪盐源盆地位于夹持于鲜水河断裂与红河断裂之间的川滇块体的东南缘,并夹于木里弧与盐源弧形构造之间。为东西向展布并向南东凸出的弧形盆地,盆地中充填了巨厚的同构造期的磨拉石,是一个由顶底不整合面限制的构造层序,具有总体先向上变细后向上变粗变浅的完整沉积旋回;盆地自南而北的充填样式总体显示为冲积扇(水下扇)-深湖-湖沼-河流冲积平原,为一个南厚北薄楔形盆地,沉只特征表明该盆地具有单断张性盆地的充填特性,川滇块体向南东挤出作用使该区由原来的挤压状态下逆冲系统转变为引张状态下的向南东的构造逃逸系统,从而在川滇块体内形成晚第三纪盐源盆地,盆地的长轴垂直于川滇块体南东向挤出方向。因此,晚第三纪盐源盆地是大陆块体侧向挤出作用的沉积响应,沉积物的时代研究表明川滇块体这次挤出构造事件出现的时间为晚中新世-上新世,其与Tapponnier(1986)大陆块体侧向多期挤逸模式最后一期挤出事件相对应。  相似文献   

9.
2007年中国在南海北部神狐海域通过钻探首次获得天然气水合物样品,证实了珠江口盆地深水区是水合物富集区。通过对珠江口盆地深水区构造沉降史的定量模拟研究,发现晚中新世以来区内构造沉降总体上具有由北向南、自西向东逐渐变快的演化趋势;从晚中新世到更新世,盆地深水区经历了构造沉降作用由弱到强的变化过程:晚中新世(11.6~5.3 Ma),平均构造沉降速率为67 m/Ma;上新世(5.3~1.8 Ma),平均构造沉降速率为68 m/Ma;至更新世(1.8~0 Ma),平均构造沉降速率为73 m/Ma。而造成这些变化的主因是发生在中中新世末-晚中新世末的东沙运动和发生在上新世-更新世早期的台湾运动。东沙运动(10~5 Ma)使盆地在升降过程中发生块断升降,隆起剥蚀,自东向西运动强度和构造变形逐渐减弱,使得盆地深水区持续稳定沉降;台湾运动(3 Ma)彻底改变了盆地深水区的构造格局,因重力均衡调整盆地深水区继续沉降,越往南沉降越大。将似海底反射(BSR)发育区与沉降速率平面图进行叠合分析,发现80%以上的BSR分布趋于构造沉降速率值主要在75~125 m/Ma之间、沉降速率变化迅速的隆坳接合带区域。  相似文献   

10.
The Miocene Lavanttal Basin formed in the Eastern Alps during extrusion of crustal blocks towards the east. In contrast to basins, which formed contemporaneously along the strike-slip faults of the Noric Depression and on top of the moving blocks (Styrian Basin), little is known about the Lavanttal Basin. In this paper geophysical, sedimentological, and structural data are used to study structure and evolution of the Lavanttal Basin. The eastern margin of the 2-km-deep basin is formed by the WNW trending Koralm Fault. The geometry of the gently dipping western basin flank shows that the present-day basin is only a remnant of a former significantly larger basin. Late Early (Karpatian) and early Middle Miocene (Badenian) pull-apart phases initiated basin formation and deposition of thick fluvial (Granitztal Beds), lacustrine, and marine (Mühldorf Fm.) sediments. The Mühldorf Fm. represents the Lower Badenian cycle TB2.4. Another flooding event caused brackish environments in late Middle Miocene (Early Sarmatian) time, whereas freshwater environments existed in Late Sarmatian time. The coal-bearing Sarmatian succession is subdivided into four fourth-order sequences. The number of sequences suggests that the effect of tectonic subsidence was overruled by sea-level fluctuations during Sarmatian time. Increased relief energy caused by Early Pannonian pull-apart activity initiated deposition of thick fluvial sediments. The present-day shape of the basin is a result of young (Plio-/Pleistocene) basin inversion. In contrast to the multi-stage Lavanttal Basin, basins along the Noric Depression show a single-stage history. Similarities between the Lavanttal and Styrian basins exist in Early Badenian and Early Sarmatian times.  相似文献   

11.
The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism.The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep.The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks.The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi–Iranian boarders towards southeast.The anticlinal structures have N–S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW–SE, and then to E–W trend.The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq.The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga’ara High.The oldest exposed rocks within the Inner Platform belong to Ga’ara Formation of Permian age; it is exposed only in the Ga’ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga’ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively.The Paleocene rocks form narrow belt west of the Ga’ara Depression, represented by Early–Late Paleocene phosphatic facies, which is well developed east of Rutbah Uplift and extends eastwards in the Foredeep. Eocene rocks; west of Rutbah Uplift are represented by marine carbonates that has wide aerial coverage in south Iraq. Locally, east of Rutbah Uplift unconformable contacts are recorded between Early, Middle and Late Eocene rocks. During Oligocene, in the eastern margin of the Inner Platform, the Outer Platform was uplifted causing very narrow depositional Oligocene basin. Therefore, very restricted exposures are present in the northern part of the Inner Platform (north of Ga’ara Depression), represented by reef, forereef sediments of some Oligocene formations.The Miocene rocks have no exposures west of Rutbah Uplift, but north and northwestwards are widely exposed represented by Early Miocene of marine carbonates with marl intercalations. Very locally, Early Miocene deltaic clastics and carbonates, are interfingering with the marine carbonates. The last marine open sea sediments, locally with reef, represent the Middle Miocene rocks and fore reef facies that interfingers with evaporates along the northern part of Abu Jir Fault Zone, which is believed to be the reason for the restriction of the closed lagoons; in the area.During Late Miocene, the continental phase started in Iraq due to the closure of the Neo-Tethys and collision of the Sanandaj Zone with the Arabian Plate. The continental sediments consist of fine clastics. The Late Miocene – Middle Pliocene sediments were not deposited in the Inner Platform.The Pliocene–Pleistocene sediments are represented by cyclic sediments of conglomeratic sandstone overlain by fresh water limestone, and by pebbly sandstone.The Quaternary sediments are poorly developed in the Inner Platform. Terraces of Euphrates River and those of main valleys represent pleistocene sediments. Flood plain of the Euphrates River and those of large valleys represent Holocene sediments. Residual soil is developed, widely in the western part of Iraq, within the western marginal part of the Inner Platform.  相似文献   

12.
The history of Middle to Late Miocene evolution of the Transylvanian Basin was determined by the bordering Carpathian orogen evolution, the tectonic events being well recorded by the sedimentary history. The basin evolved in a back-arc setting, under a regional, compressional stress field. The major tectonic events produced during the Late Sarmatian and Post-Pannonian were related to the reactivation of the pre-Badenian fault systems. The Transylvanian Basin got uplifted after the Late Pannonian (? during the Pliocene), and at least 500 m of sedimentary cover was eroded.

Based on seismic and well-log interpretation, core and outcrop sedimentology, and microfauna, eight sequences were defined. The early Middle Miocene sequences are roughly synchronous to five 3rd order global sea-level cycles. Most of the recognized sequence boundaries are enhanced by regional tectonic events. The sedimentary evolution was also strongly influenced by salt-tectonics, active starting with the Late Sarmatian.

Two sequences were identified in the Lower Badenian deposits. The third sequence (late Early Badenian to early Mid Badenian) preserves information about deeper shelf settings. The lowstand of the following sequence was responsible for the deposition of the salt formation (late Mid Badenian), an important lithostratigraphic marker in the sedimentary record of the basin. In general, the Upper Badenian deposits (parts of the 4th and 5th sequences) belong to deep marine submarine fan systems. The Sarmatian (partially 5th, 6th and partially 7th sequences) was characterized by diverse salinity conditions, stretching from brackish to hypersaline, and by high tectonic instability, which induced several significant relative sea-level falls. During that time, deltaic (north) and fandeltaic (east) systems fed submarine fans, stacked between salt-related submarine heights (“channeled” deep-marine depocenters). Most of the Pannonian deposits (partially 7th and 8th sequences) belong to submarine fan systems, but shallower facies were also found in the western and eastern part of the basin.  相似文献   


13.
This study investigates the evolution of the Miocene Guangle carbonate platform(or Triton Horst)of the northwestern South China Sea margin.The platform is located at a junction area surrounded by Yinggehai basin,Qiongdongnan basin and Zhongjiannan basin.Well and regional geophysical data allow the identification of the morphologic and stratigraphic patterns.The Guangle carbonate platform was initiated on a tectonic uplift during the Early Miocene.The early platform was limited at Mesozoic granitic basement,pre-Paleogene sediments localized tectonic uplift and was small extension at the beginning stage.While during the Middle Miocene,the carbonate buildup flourished,and grow a thrived and thick carbonate succession overlining the whole Guangle Uplift.The isolated platforms then united afterward and covered an extensive area of several tens of thousands of square kilometers.However,it terminated in the Late Miocene.What are the control factors on the initiation,growth and demise of the Guangle carbonate platform?The onset of widespread carbonate deposits largely reflected the Early Miocene transgression linked with early post-rift subsidence and the opening of the South China Sea.Stressed carbonate growth conditions on the Guangle carbonate platform probably resulted from increased inorganic nutrient input derived from the adjacent uplifted mainland,possibly enhanced by deteriorated climatic conditions promoting platform drowning.Therefore,tectonics and terrigenous input could be two main controlling factors on the development of the Guangle carbonate platforms and main evolution stages.  相似文献   

14.
《Geodinamica Acta》2013,26(3-4):255-282
The Lycian molasse basin of SW Turkey is a NE-SW-oriented basin that developed on an imbricated basement, comprising the allochthonous Mesozoic rocks of the Lycian nappes and Palaeocene-Eocene supra-allochthonous sediments. The imbricated basement has resulted from a complex history related to the emplacement of different tectonic units from Late Cretaceous to Late Eocene. Following imbrication, extensional collapse of the Lycian orogen resulted in extensive emergent areas, some of which coincide with present-day mountains. These were surrounded by interconnected depressions, namely, the Kale-Tavas, Çardak-Dazk?r? and Denizli subbasins.

The Lycian molasse sequence contains a relatively complete record of the tectonic history of the Lycian orogenic collapse from which it was derived. The sequence is characterised by interdependence between tectonism and sedimentation, the latter of which includes fining-and coarsening-upward sedimentary cycles with syn-depositional intrabasinal unconformities.

The Denizli subbasin consists of thick, coarse-grained wedges of alluvial fans and fine-grained fan-delta deposits formed in a shallowmarine environment. Some areas of the fan deltas were colonised by corals, red algae and foraminifera, forming patch reefs.

The first phase of extensional collapse in the region is marked by the Lycian orogenic collapse, which may have been initiated by the beginning of the Oligocene (Rupelian), following the main Menderes metamorphism. Starting in the latest Early Miocene or in the Middle Miocene, the area of the molasse basin was subject to deformation with the Lycian nappes, and to erosion as well. At that time, the Lycian nappes, with some ophiolitic assemblages, were thrust over the molasse deposits and thus, NE-SW-trending folds were formed. The molasse deposits and thrust-related deformational structures were then unconformably covered by Upper Miocene continental deposits which belong to the neotectonic period of SW Turkey. The second phase of extensional collapse is marked by granitic intrusions and the formation of Miocene detachment-related extensional basins. This phase may have been related to the exhumation of the gneissic core of the Menderes Massif, from which fragments were derived and incorporated into the upper parts of the Denizli subbasin during the Aquitanian.  相似文献   

15.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

16.
方鹏高  丁巍伟  方银霞  赵中贤 《地球科学》2015,40(12):2052-2066
为了探索碳酸盐台地在海盆演化过程中的作用,对南海南部礼乐滩区域碳酸盐台地的发育及其与新生代构造沉降特征的相关性进行研究.对多道地震数据的分析表明:在研究区广泛发育包括碳酸盐台地和生物礁在内的碳酸盐沉积,其发育时间主要集中在晚渐新世至早中新世期间,在中中新世后开始退积和淹没.通过对穿越礼乐滩区的两条NW-SE向测线NH973-2和DPS93-2的构造沉降反演,进行沉降量、沉降速率计算和构造分析.结果表明:沉降速率及沉降量随不同时期的构造活动而发生变化,可分为缓慢沉降期(古新世-早渐新世,张裂阶段)、隆升剥蚀期(晚渐新世-早中新世,漂移阶段)、加速沉降期(早中新世末期,后漂移阶段1)、强烈沉降期(中新世,后漂移阶段2)和稳定沉降期(晚中新世至今,后漂移阶段3)5个发育期.碳酸盐台地的发育期和南海海盆的漂移阶段相对应,构造沉降的分析表明该期间具有构造抬升作用,其与相对上升的海平面结合有利于碳酸盐沉积的发育.在南海扩张期间主地幔对流的控制下,南部陆缘区礼乐地块和礼乐滩盆地之间较大的地壳厚度差异会导致侧向上地温梯度的差异,从而形成礼乐滩盆地之下的次生对流.该次生对流控制了研究区在晚渐新世至早中新世期间的隆升剥蚀作用.   相似文献   

17.
A detailed analysis of depositional history of Miocene sediments and various effects which are governed for creation of accommodation space as well as the processes of sedimentation inherent to the depositional system at that period is described in this work. The early Miocene clastic sediments are deposited in prograding environment where sediment supply exceeds the accommodation space available. The accommodation space created due to basin subsidence and source area upliftment due to local and regional tectonic activity in the basin. In the early Miocene time, the Assam shelf major transgression occurred and several minor transgression followed. There was wide spread deposition of the fluvial Tipam sandstones. In Miocene time due to thrust loading and flexure subsidence, accommodation space was created for deposition of the sediments. The Tipam Sandstone is deposited by cyclic deposition of fining upward sequence in a fluvial to brackish water environment of braided river processes. The mechanism of braided rivers is also discussed in which it laterally expanded, leaving sheet like or wedge — shaped deposits of channel and bar complexes preserving only minor amounts of flood plain material.  相似文献   

18.
青藏高原晚新生代孢粉组合与古环境演化   总被引:10,自引:2,他引:10       下载免费PDF全文
对取自沱沱河盆地、通天河盆地、那曲盆地、东温泉盆地、乌郁盆地的新近纪湖相沉积与取自巴斯错、错鄂、纳木错的晚第四纪湖相沉积,进行孢粉分析;结合西宁—民和盆地、伦坡拉盆地、南木林盆地、渭河盆地的孢粉资料,分析青藏及邻区新生代晚期古植被和古环境的演化过程。发现渐新世晚期—中新世早期青藏与周边邻区的古环境发生了显著分异,导致青藏地区热带亚热带植物濒临消亡,与全球温暖气候条件和青藏地区古纬度环境不符,是青藏高原隆升的重要标志。中新世早期—第四纪晚期,青藏高原落叶阔叶林和针叶林呈现总体减少趋势和准周期性波动,与全球气候变化呈良好对应关系。第四纪晚期草本植物含量逐步增高,出现蒿—松—桦为主,针叶林、落叶阔叶林、灌木、草本植物混生的植被景观。  相似文献   

19.
IODP367/368航次在南海北部深海盆地多个站位发现上中新统厚达数百米的大规模深海浊积岩。采用碎屑锆石U-Pb年龄谱系分析方法对U1500站上中新统浊积砂体进行源汇对比分析。研究结果表明U1500站上中新统浊积岩碎屑锆石年龄谱系与其西侧琼东南盆地和北侧珠江口盆地中新世沉积物特征类似。多维排列分析(MDS)结果也显示,该站位样品与珠江口盆地、琼东南盆地沉积物关系密切,表明南海北部深海盆地内厚达数百米的上中新统浊积砂体为南海北部物源和南海西部物源混合堆积形成。南海西部陆源输入物质以浊流搬运的方式,沿中央峡谷从西到东搬运至南海东部深海盆地;南海北部珠江物源以重力流的形式,经南海北部陆坡峡谷搬运至深海盆地中,两种来源的沉积物在深海盆地发生混合沉积,形成U1500站厚达数百米的浊积砂体。南海北部深海盆地厚层浊积砂体物质来源的准确识别,对深刻理解南海新生代盆地的构造演化、沉积物充填过程、物源演变以及古地理特征均具有重要意义。  相似文献   

20.
The International Ocean Discovery Program (IODP) Expedition 367/368 reported massive Upper Miocene deep-sea turbidite in the northern South China Sea basin. The Upper Miocene turbidite sand-bodies at Site U1500 were examined with detrital zircon U-Pb dating to conduct the source-to-sink analysis. This study shows that the U-Pb age spectrums of Site U1500 sample are similar to those detrital zircons from the Miocene Qiongdongnan Basin and the Pearl River Mouth Basin. Multidimensional scaling (MDS) plot also shows that the turbidite sand-bodies at Site U1500 are closely related to the sediments in the Pearl River Mouth Basin and Qiongdongnan Basin. It is likely that the thick deep-sea turbidite succession in the deep-water basin of northern South China Sea was formed by a mixed provenance pattern during the late Miocene. On the one hand, terrigenous sediments from the west of the South China Sea were transported along the Central Canyon to the eastern South China Sea deep-sea basin in the form of turbidity current. On the other hand, terrigenous sediments were also transported from the Pearl River through the slope canyon system to the northern South China Sea in the form of gravity flow . Those mixed sediments from two different source areas have collectively deposited at the deep-sea basin and thus, give rise to turbidite sequence of hundred meters. Provenance analysis of the thick turbidites sand-bodies in the deep-sea basin is of great significance to the profound understanding of the tectonic evolution, filling processes, provenance evolution, and the palaeogeographic characteristics of the Cenozoic basins of the South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号