首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential for the mean climate of the tropical Pacific to shift to more El Niño-like conditions as a result of human induced climate change is subject to a considerable degree of uncertainty. The complexity of the feedback processes, the wide range of responses of different atmosphere–ocean global circulation models (AOGCMs) and difficulties with model simulation of present day El Niño southern oscillation (ENSO), all complicate the picture. By examining the components of the climate-change response that projects onto the model pattern of ENSO variability in 20 AOGCMs submitted to the coupled model inter-comparison project (CMIP), it is shown that large-scale coupled atmosphere–ocean feedbacks associated with the present day ENSO also operate on longer climate-change time scales. By linking the realism of the simulation of present day ENSO variability in the models to their patterns of future mean El Niño-like or La Niña-like climate change, it is found that those models that have the largest ENSO-like climate change also have the poorest simulation of ENSO variability. The most likely scenario (p=0.59) in a model-skill-weighted histogram of CMIP models is for no trend towards either mean El Niño-like or La Niña-like conditions. However, there remains a small probability (p=0.16) for a change to El Niño-like conditions of the order of one standard El Niño per century in the 1% per year CO2 increase scenario.  相似文献   

2.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

3.
In this study, statistical techniques are employed to decompose climate signals around southern Africa into the dominant temporal frequencies, with the aim of modelling and predicting area-averaged rainfall. In the rainfall time series over the period 1900–1999, the annual cycle accounts for 83% of variance. Residual spectral energy cascades from biennial (42%) to interannual (20%) to decadal bands (3%). Regional climate signals are revealed through a multi-taper singular value decomposition analysis of sea surface temperature and sea level pressure fields over the Atlantic and Indian Oceans, in conjunction with southern Africa rainfall. Rossby wave action in the South Indian Ocean dominates the biennial scale variability. El Niño-Southern Oscillation (ENSO) and related Indian Ocean dipole patterns are important for interannual variability. Significant sea temperature and pressure fluctuations occurring 6–12 months prior to rainfall contribute biennial and interannual indices to a multi-variate model that demonstrates useful predictive skill.  相似文献   

4.
The Paraná-Plata basin is the second largest hydrological basin in South America and is of great importance for the countries of the region (Argentina, Bolivia, Brazil, Paraguay and Uruguay). The present study focuses on the long-term trends in basin-scale precipitation with special emphasis on the role of distribution changes in extreme large-scale precipitation events and on the characteristics and evolution of ENSO teleconnections over the last 50 years. First, we defined a Paraná-Plata basin total precipitation index (PTPI) as the precipitations spatially averaged over the hydrological basin. On interannual time scales, such an index is mainly representative of anomalous monsoon precipitations in the northern part of the basin and large convective precipitation anomalies in the center of the basin (Paraguay-southern Brazil-Uruguay-northern Argentina) typical of the canonical ENSO teleconnection pattern. Our major findings clearly highlight a positive trend in yearly averaged PTPI mainly from the late 1960s to the early 1980s with a strong dependence from month-to-month. The largest precipitation increase is observed from November to May in southern Brazil and Argentina. A close examination of PTPI distributions during the two halves of the period 1950–2001 shows that the changes in the mean state from 1950–1975 to 1976–2001 result from significant changes in each calendar month mean state and in the tails of the PTPI anomaly distributions in May with lesser and weaker large-scale dry events and stronger large-scale wet events. Further studies will be needed to assess whether the observed trend in large-scale extreme precipitation conditions can be related to natural climate variability or anthropogenic activities and whether it is associated to changes in local/regional extreme events. The stronger wet conditions in different months seem to be associated to changes in ENSO characteristics (amplitude, propagation, spatial structure, ...) since the 1982–1983 El Niño. Indeed, spatial ENSO teleconnections (stronger in November and April–May) have greatly evolved from 1950–1975 to 1976–2001. Moreover, we demonstrate that there is a strong modulation and displacement of the teleconnection patterns from one event to another, impeding the definition of robust statistical relationship between ENSO and precipitation in the Paraná-Plata basin (except maybe over a very limited area near the common border between Paraguay, Argentina and Brazil). Finally, the non-antisymmetrical patterns of precipitation between El Niño and La Niña conditions and the non-linear relationship between precipitation and either Niño3.4 or Niño1+2 sea surface temperature indices show that linear statistical forecast systems are actually of very limited use for impact predictions on society on a local or regional scale.  相似文献   

5.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

6.
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Niño/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990s [the so-called Coupled Model Intercomparison Project-2 (CMIP2) models]. The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Niño. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modelling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Niño precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Niño forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies to occur in the IPCC models. This improvement is directly proportional to the skill of the tropical El Niño forced precipitation anomalies.  相似文献   

7.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

8.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

9.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

10.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

11.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

12.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

13.
Summary This paper presents the results of the Florida State University atmospheric general circulation model that addresses the impact of sea surface temperature anomalies on an El Niño year. Northern Hemisphere winter season simulation. Specifically, our interest is in the simulation of seasonal winter monsoonal rainfall, the planetary scale divergent motions and the westerly wind anomalies of an El Niño year.The El Niño episode of 1982–1983 was interesting due to its higher than average amplitude and its overall evolution. By late 1982 the anomalous circulations associated with the sea surface temperature forcing had begun to take shape even though the anomalies did not attain their peak amplitude until February 1983. The atmosphere-ocean teleconnections set up a strong pattern of geopotential height anomalies during the Northern Hemisphere winter that coincides with El Niño conditions in the tropical Pacific Ocean.Wallace and Gutzler (1981) defined a Pacific North American (PNA) teleconnection pattern index based on data from within this region. The El Niño episode of 1982–1983 has been shown to be strong via the PNA Index and illustrates an importance for climate models to correctly simulate these teleconnections. The importance of the forced anomalies can be seen in the long-range forecasting of conditions over North America as well as the winter monsoon intensity and location.In this study, we utilize a general circulation model with a resolution of triangular truncation at 42 waves to investigate the effects of prescribed sea surface temperature anomalies. We are able to simulate the majority of the large-scale atmospheric response although on regional climatic scales some phase shifts seem apparent.With 7 Figures  相似文献   

14.
A tree-ring reconstruction of summer temperatures from northern Patagonia shows distinct episodes of higher and lower temperature during the last 1000 yr. The first cold interval was from A.D. 900 to 1070, which was followed by a warm period A.D. 1080 to 1250 (approximately coincident with theMedieval Warm Epoch). Afterwards a long, cold-moist interval followed from A.D. 1270 to 1660, peaking around 1340 and 1640 (contemporaneously with earlyLittle Ice Age events in the Northern Hemisphere). In central Chile, winter rainfall variations were reconstructed using tree rings back to the year A.D. 1220. From A.D. 1220 to 1280, and from A.D. 1450 to 1550, rainfall was above the long-term mean. Droughts apparently occurred between A.D. 1280 and 1450, from 1570 to 1650, and from 1770 to 1820. In northern Patagonia, radiocarbon dates and tree-ring dates record two major glacial advances in the A.D. 1270–1380 and 1520–1670 intervals. In southern Patagonia, the initiation of theLittle Ice Age appears to have been around A.D. 1300, and the culmination of glacial advances between the late 17th to the early 19th centuries.Most of the reconstructed winter-dry periods in central Chile are synchronous with cold summers in northern Patagonia, resembling the present regional patterns associated with the El Niño-Southern Oscillation (ENSO). The years A.D. 1468–69 represent, in both temperature and precipitation reconstructions from treerings, the largest departures during the last 1000 yr. A very strong ENSO event was probably responsible for these extreme deviations. Tree-ring analysis also indicates that the association between a weaker southeastern Pacific subtropical anticyclone and the occurence of El Niño events has been stable over the last four centuries, although some anomalous cases are recognized.  相似文献   

15.
Summary The precipitation variability over South America south of 20°S (SA20S) has been investigated at a decadal (DD) and non-DD time scales. The results suggest that the space-time particularities of the ENSO-related precipitation anomalous patterns depend on the time scales considered. The precipitation patterns in the SA20S associated with the non-DD episodes exhibit a space-time coherent characteristics during ONDJ (0)–JJAS (+1) period such that a prominent area of positive (negative) anomalies is observed in the central SA20S and displaced northeastward with the time for the non-DD El Niños (La Niñas). On the other hand, the precipitation anomalous patterns associated with the DD episodes feature more complex horizontal structures and larger anomalies than those of the non-decadal episodes. It is also worthwhile noting that the SA20S climate experiences the strongest and more extensive effects of the DD episode during the austral summer of the year following the onset of the DD episodes.Received October 10, 2002; accepted December 12, 2002 Published online: May 8, 2003  相似文献   

16.
Bulk formulae for wind stress, sensible and latent heat flux are presented that are suitable for strong mesoscale events such as westerly wind bursts that contribute to the El Niño-Southern Oscillation (ENSO). Their exchange coefficients for heat and momentum have a simple polynomial dependence on wind speed and a linear dependence on air–sea temperature difference. The accuracy of these formulae are validated with respect to air–sea fluxes estimated using the standard algorithm adopted by the Tropical Ocean-Global AtmosphereCoupled-Ocean Atmosphere Response Experiment (TOGA COARE). The comparison ismade for observations from 96 Tropical Atmosphere Ocean (TAO) array and National Oceanographic Data Center (NODC) moorings in the equatorial and North Pacific Ocean spanning years 1990–1999. The bulk formulae are shown to have very small median root–mean-square differences with respect to the TOGA COARE estimates: 0.003 N m-2, 1.0 W m-2, and 10.0 W m-2 for the wind stress, sensible heat flux, and latent heat flux, respectively.The variability of air–sea fluxes during the 1997–1998 ENSO is also examined, along with a possible relationship between air–sea fluxes and surface ocean mixed layer depth (MLD). The wind stress and latent heat flux during the 1997 El Niño are found to be greater in the warm pool of the western Pacific than in the central Pacific where the ENSO is most clearly seen. These differences disappear upon the start of La Niña. The MLD in the equatorial Pacific is found to be moderately correlated to air–sea fluxes just before the start of the 1998 La Niña and poorly correlated otherwise.  相似文献   

17.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

18.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   

19.
Low-frequency time-space regimes in tropical convection   总被引:2,自引:0,他引:2  
Summary The multi-scale time-space regimes of the low-frequency convective activity over the maritime continent and tropical western Pacific are investigated using the monthly infrared radiance black body temperature (IRTBB) over a latitude band of 5S–9S, 80E–160W for the time period of 1980–1993. The complex Morlet wavelet transform and the complex empirical orthogonal function (CEOF) analysis are used. The zonal mean of the monthly IRTBB is dominated by the annual cycle which is influenced by a monsoon regime. An interannual signal around the time scale of 4.8-year and a decadal signal are obvious. In the zonal deviation, each CEOF represents a particular spatial regime; its corresponding principal component exhibits different multi-scale temporal behavior. The first leading component represents the variability due to large scale land-ocean distribution (the maritime continent, the Indian Ocean and the western Pacific) related to monsoon, with a dominant annual time scale. The second leading component represents the fluctuation of Walker circulation, associated with the El Niño-Southern Oscillation (ENSO) events having a main time scale around 4.8-year and the quasi-biennial oscillation (QBO) around 2.4-year. The third leading component represents the variability due to small-scale land-ocean distribution (Java, New Guinea and the surrounding seas), with a dominant annual time scale. The main time scales in all the components seem to be modulated by longer time scales in either amplitude or frequency or both.Different time scales, as well as their in-phase interference, may play different roles in developing an individual ENSO event. The 1982/1983 event is dominated by an enhanced QBO. The 1986/1987 event is dominated by an enhanced 4.8-year oscillation. The 1991 and 1993 events may have resulted from an in-phase interference among several interannual time scales, abnormal annual cycles, and also highfrequency variability.SAIC/General Sciences Corporation.With 6 Figures  相似文献   

20.
Summary The transition from a cold to a warm state of the E1 Niño-Southern Oscillation (ENSO) cycle is studied using Comprehensive Ocean-Atmosphere Data Sets (COADS) for the period 1950–1992.The onset of El Niño (November to December of the year preceding the El Niño) is characterized by an occurrence of minimum sea-level pressure anomalies in the subtropics around the node line of the Southern Oscillation. This pressure fall favors the formation of the anomalous cyclonic circulations over the western Pacific and leads to the establishment of anomalous westerlies in the western equatorial Pacific during the boreal spring of the El Niño year. The westerly anomalies then intensify and propagate into the central Pacific by the end of the El Niño year. This is an essential feature of the development of a basin-wide warming.It is argued that the development of the equatorial westerly anomalies over the western Pacific may result from the thermodynamic coupling between the atmosphere and ocean. In boreal winter and spring the mean zonal winds change from westerly to casterly over the western equatorial Pacific. A moderate equatorial westerly anomaly initially imposed on such a mean state may create eastward SST gradients via changing rates of evaporational cooling and turbulent mixing. The equatorial SST gradients would, in turn, induce differential heating and zonal pressure gradients which reinforce the westerly anomalies. The feedback between the eastward SST gradients and westerly anomalies promotes the eastward propagation of the westerly anomalies.With 9 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号