首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

2.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

3.
Summary The TOGA Coupled Ocean-Atmosphere Response Experiment (COARE) concentrated a variety of observational systems in the warm pool of the western equatorial Pacific for an Intensive Observation Period (IOP) November 1992 through February 1993. In this paper, aspects of the largescale variations of the tropical atmosphere and Pacific Ocean surrounding the observations of air-sea interaction in the Intensive Flux Array (IFA) during the IOP are described, with the objective of providing a context for the future analyses of these observations.The evolution of the 1991–1992 El Niño/Southern Oscillation event was unusual: Warm SST anomalies in the equatorial cold tongue region switched to colder than climatology in the last half of 1992, but waters warmer than 30°C remained displaced eastward just west of the dateline, coninuing to fuel anomalous convection there during the IOP. Fortunately, SST in the IFA remained warmer than 29°C during most of the IOP, and convective activity was observed over the IFA. The Southern Oscillation Index, which had relaxed to near zero prior to the experiment, decreased during the IOP, reflecting sea level presure changes associated with renewed westerly wind activity. In response to these westerly wind events, the warm pool migrated back into the central equatorial Pacific, leading to a reintensification of the ENSO warm SST anomalies east of the dateline.With 10 Figures  相似文献   

4.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

5.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   

6.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

7.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study the Quasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution during different phases.Results show that:(1)CSVD method can better reveal phase relation between two physical fields:(2)Not only northerly anomalies from Northern Hemisphere but also southerly anomalies from Southern Hemisphere contribute to EI Nino.They converge in western equatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strong El Nino event onset:(3)An abnormal subtropical anticyclone circulation appears over northwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormal cyclone during a decaying La Nina.which encourage the development of El Nino:(4)The westerly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropical cyclone pairs,which are located in north and south Pacific respectively,and are not the eastward westerly anomalies from equatorial Indian Ocean.  相似文献   

8.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study theQuasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution duringdifferent phases.Results show that:(1)CSVD method can better reveal phase relation betweentwo physical fields:(2)Not only northerly anomalies from Northern Hemisphere but alsosoutherly anomalies from Southern Hemisphere contribute to EI Nino.They converge in westernequatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strongEl Nino event onset:(3)An abnormal subtropical anticyclone circulation appears overnorthwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormalcyclone during a decaying La Nina.which encourage the development of El Nino:(4)Thewesterly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropicalcyclone pairs,which are located in north and south Pacific respectively,and are not the eastwardwesterly anomalies from equatorial Indian Ocean.  相似文献   

9.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

10.
After its maturity, El Ni?o usually decays rapidly in the following summer and evolves into a La Ni?a pattern. However, this was not the case for the 2018/19 El Ni?o event. Based on multiple reanalysis data sets, the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019, after the 2018/19 El Ni?o event, are investigated in the tropical Pacific. After a short decaying period associated with the 2018/19 El Ni?o condition, positive sea surface temperature anomalies (SSTAs) re-intensified in the eastern equatorial Pacific in late 2019. Compared with the composite pattern of El Ni?o in the following year, two key differences are evident in the evolution of SSTAs in 2019. First, is the persistence of the surface warming over the central equatorial Pacific in May, and second, is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September. Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific, induced remotely by an extreme Indian Ocean Dipole (IOD) event, acted as a triggering mechanism for the second-year warming in late 2019. That is, the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific, which induced downwelling Kelvin waves propagating eastward along the equator. At the same time, the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific. Mixed-layer heat budget analyses further confirm that positive zonal advection, induced by the anomalous westerly winds, and thermocline feedback played important roles in leading to the second-year warming in late 2019. This study provides new insights into the processes responsible for the diversity of El Ni?o evolution, which is important for improving the physical understanding and seasonal prediction of El Ni?o events.  相似文献   

11.
Based on the Simple Ocean Data Assimilation (SODA) from 1970 to 2001, equatorial currents and their association with the warm water propagation mechanism during two patterns of El Niño events are studied. In this study, the middle-pattern of El Ni?o (ME) and the eastern-pattern of El Niño (EE) events are defined as anomalous warm water originating first to the west and the east of 120°W, respectively. It is pointed out that the westerly and eastward anomalous currents in the western Pacific are stronger during the ME event than the EE event, which is conducive to the eastward migration of warm water from western Pacific by zonal advection of temperature. In contrast, the weaker westerly and the westward anomalous currents east of the dateline would be unfavorable for the eastward migration of warm water during EE events. More importantly, another propagation mechanism of the warm water is attributed to the anomalous convergence of the surface currents, as well as the anomalous divergence of the subsurface currents, which obstruct the upwelling of colder water from the deep ocean. Meanwhile, the anomalous convergence of the surface currents and the anomalous divergence of the subsurface currents maintain eastward migration, which plays an important role in the eastward migration of the warm water during ME events. Although there is anomalous convergence in the upper ocean and anomalous divergence in the subsurface ocean during EE events, they appear quasi-stationary in the western Pacific. The warm water over the eastern Pacific during EE events is caused by the local anomalous convergence of surface currents and the anomalous divergence of subsurface currents.  相似文献   

12.
超强厄尔尼诺事件海洋学特征分析与预测回顾   总被引:3,自引:1,他引:2  
2015/2016年厄尔尼诺事件被认为是一次与1982/1983和1997/1998年相当的超强事件。基于多套再分析数据,比较了此次事件的海洋上层变量主要特征与历史上两次超强事件的异同,并利用热带太平洋混合层热收支方程对主要物理过程进行了定量分析。研究认为,2015/2016年事件前期为异常高海温东传特征,且前期形成了一次弱的中太平洋型暖事件;但后期表现为弱西传特征,在成熟位相转换成东太平洋型强厄尔尼诺。此次事件中伴随着多次西风爆发事件和开尔文波东传,但赤道开尔文波在盛期基本维持在中东太平洋而不继续东传,赤道外罗斯贝波西传特征亦不明显。相比之下,此次事件在发展-成熟期前后的赤道“热容量放电”过程更加明显些。此次事件异常暖中心位置偏西,其主要原因很可能与赤道东太平洋的强东风异常和冷海水上翻,以及纬向洋流异常和次表层温度异常分布偏西有关;东边界冷水入侵,削弱赤道东太平洋海温异常程度,可能是此次事件位置偏西的直接原因。在海洋上层热量收支中,此次事件中温跃层反馈是促进海温升高和位相转换的最关键过程,纬向平流反馈项亦发挥了重要作用,两种过程共同形成了超强的升温幅度和偏西的异常暖海温分布型。中国国家气候中心新一代ENSO预测系统(SEMAP2.0)每年两次的实际会商预测中给出了较为合理的预测,特别是考虑前期海洋变化预报因子信息的统计模型更好地预测出了海温异常的波动演变状况,成为多方法集合(MME)的重要成员。   相似文献   

13.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

14.
Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific   总被引:4,自引:0,他引:4  
Evaluation of competing El Niño/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (4°N-4°S), using 1950–1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In time-longitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the devil's staircase interaction mechanism between the annual cycle and ENSO.  相似文献   

15.
The present study aims at studying the role played by high-frequency wind variability, wave reflection and easterly wind anomalies in the western Pacific in the onset, growth and termination phases of the 1997–1998 El Niño using the Trident intermediate coupled model and observations. While the anomalous strength of the trade winds in 1996 favored the initiation of a warm event in 1997 (via western Pacific boundary Rossby wave reflection), the actual timing of the onset and the amplitude of the event resulted from the large March 1997 wind event. Once initiated, high-frequency westerly winds strongly contributed to the rapid growth of the warm event and to the displacement of the eastern edge of the warm-pool. Moreover, both easterly and westerly high-frequency wind variability in 1997–1998 contributed to the amplitude of the event, set the evolution of the warm event and potentially influenced the equatorial Pacific conditions at least one year after the El Niño event. In addition, eastern boundary reflection also significantly contributed to the amplitude and duration of the warm event, whereas its termination was a combination of various factors: reflection of upwelling Rossby waves at the western boundary and large easterly wind anomalies observed in the western Pacific from November 1997 to early 1998. These factors were sufficient to terminate the event and to switch temperature anomalies from warm to cold. To conclude, understanding the coupling between the high- and low-frequency wind variability, i.e., studying ENSO as a multi-scale phenomenon, will certainly lead to a better comprehension of the diversity of its behavior and potentially to an improvement of its predictability.  相似文献   

16.
亚澳季风异常与ENSO准四年变化的联系分析   总被引:2,自引:0,他引:2  
分析了赤道地区纬向风的年际变化特征,以及亚澳季风与ENSO在各个位相的联系。结果表明:赤道纬向风变化与中东太平洋海温变化在准四年周期上是强烈耦合的;在El Eino期间东亚冬季风弱,夏季风强,而南亚夏季风弱,反之,在La Nina期间东亚冬季风强,夏季风弱,而南亚夏季风强;东亚地区的异常北风有利于西太平洋西风异常爆发,使得东太平洋海温升高,但只有随后在中东太平洋出现持续性西风异常,El Nino才能发展,其中来自太平洋中部的异常北风(并不是来自东亚大陆地区)和南太平洋中部的异常南风的辐合对中东太平洋出现持续性西风异常起重要的作用,尤其是澳大利亚东北部的季风异常的影响更为显。  相似文献   

17.
In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 El Nino episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progresses behaved as follows: Both of the moderate El Nino episodes matured in the central equatorial Pacific during the early winter. The zonal wind anomalies near the sea surface of the west-central equatorial Pacific excited equatorial Kelvin waves propagating eastward and affected the evolution of the El Ni\~no episodes. From spring to early summer, the concurring anomalous easterly winds in the central equatorial Pacific and the end of upwelling Kelvin waves propagating eastward in the western equatorial Pacific, favored the equatorial warm water both of the SST and the subsurface temperature in the western Pacific. These conditions favored the warm state of the western equatorial Pacific in the early summer for both cases of 2003 and 2007. Due to the active convection in the western equatorial Pacific in the early summer and the weak warm SST anomalies in the tropical western Pacific from spring to early summer, the convective activities in the western Pacific warm pool showed the pattern in which the anomalous strong convection only appeared over the southern regions of the tropical western Pacific warm pool, which effects the meridional shift of the western Pacific subtropical high in the summer. The physical progress of the delayed impacts of the El Ni\~no episodes in the central equatorial Pacific and their decaying evolution on the climate anomalies in eastern China were interpreted through the key role of special pattern for the heat convection in the tropical western Pacific warm pool and the response of the western North Pacific anomalous anticyclone.  相似文献   

18.
基于1979~2013年多种再分析资料,合成分析了El Ni?o发展年和La Ni?a年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Ni?o发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Ni?o强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Ni?a年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Ni?a年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Ni?o发展年和La Ni?a年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。  相似文献   

19.
It has long been acknowledged that there are two types of El Ni(n)o events,i.e.,the eastern Pacific El Ni(n)o (EE) and the central Pacific El Ni(n)o (CE),according to the initial position of the anomalous warm water and its propagation direction.In this paper,the oceanic and atmospheric evolutions and the possible mechanisms of the two types of El Ni(n)o events were examined.It is found that all the El Ni(n)o events,CE or EE,could be attributed to the joint impacts of the eastward advection of warm water from the western Pacific warm pool (WPWP) and the local warming in the equatorial eastern Pacific.Before the occurrence of CE events,WPWP had long been in a state of being anomalous warm,so the strength of eastward advection of warm water was much stronger than that of EE,which played a major role in the formation of CE.While for the EE events,most contribution came from the local warming of the equatorial eastern Pacific.It is further identified that the immediate cause leading to the difference of the two types of El Ni(n)o events was the asynchronous variations of the Southern Oscillation (SO) and the Northern Oscillation (NO) as defined by Chen in 1984.When the transition from the positive phase of the NO (NO+) to NO- was prior to that from SO+ to SO-,there would be eastward propagation of westerly anomalies from the tropical western Pacific induced by NO and hence the growth of warm sea surface temperature anomalies in WPWP and its eastward propagation.This was followed by lagged SO-induced weakening of southeast trade winds and local warming in the equatorial eastern Pacific.These were conducive to the occurrence of the CE.On the contrary,the transition from SO+ to SO- leading the transition of NO would favor the occurrence of EE type events.  相似文献   

20.
During El Niño events when positive sea surface temperature (SST) anomalies form in the equatorial Pacific, SST anomalies also tend to develop in the North Pacific. This study attempts to model and explain the large-scale features of the observed SST anomaly field in the North Pacific during the fall and winter of the El Niño year. The experiment design consists of a mixed layer ocean model of the North Pacific which is forced by atmospheric surface fields from two sets of Community Climate Model (CCM) integrations: the El Niño set with prescribed positive SST anomalies in the tropical Pacific; and the control set which is obtained from an extended CCM integration with prescribed climatological SSTs. The response of the midlatitude ocean to atmospheric surface fields associated with El Niño is obtained by compositing each set of model integrations (El Niño and Control) and then taking the difference between the composites. The ocean model is able to reproduce the general features of the observed midlatitude SST anomaly pattern: warm water in the northeast Pacific and an elliptically shaped cold pool in the central Pacific. In these regions, a large fraction of the temperature anomalies are significant at the 95% level as indicated by a two tailed t-test. The ocean temperature anomalies simulated by the model are primarily caused by changes in the sensible and latent heat flux and to a lesser extent the longwave radiation flux. Entrainment of cold water from below the mixed layer also influences ocean temperatures. However, the entrainment anomaly pattern has a complex spatial structure which does not always coincide with the simulated mixed layer temperature anomalies.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号