首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Nares Strait separating Greenland and northernmost Canada is floored by continental crust. Most palaeogeographic reconstructions of Laurentia and the North Atlantic region model the seaway as the site of massive sinistral strike–slip and/or compression/transpression, subduction and collision, the supposed manifestations of the hypothetical Wegener Fault. However, these reconstructions fail to take into account the bedrock geology that represents within-plate evolution. Both sides of Smith Sound, the southernmost part of Nares Strait, expose the same early Proterozoic to early Palaeozoic assemblages that are unaffected by seaway-related tectonism or thermal activity. Smith Sound is an intact crustal block or `linchpin' demonstrating that there was no independent Greenland plate. North-west Greenland was not a leading plate margin neither was Nares Strait the site of the plate boundary between Greenland and North America. The Wegener Fault does not exist. The Smith Sound linchpin constitutes a key constraint that must be respected in any palaeogeographic reconstruction of the region.  相似文献   

2.
A combined analysis of the recently collected aeromagnetic data from the Eurasian Basin with the magnetic data from the Labrador Sea, the Norwegian-Greenland Sea and the North Atlantic yields a plate kinematic solution for the Eurasian Basin which is consistent with the solution for the North Atlantic as a whole. It shows that the Eurasian Basin and Norwegian-Greenland Sea started to evolve at about anomaly 25 time, though active seafloor spreading did not start in either of these regions until anomaly 24 time. It further shows that the spreading in the Eurasian Basin has been a result of motion only between the North American and Eurasian plates since the beginning, with the Lomonosov Ridge remaining attached to the North American plate. The relative motion among the North American, Greenland and Eurasian plates as obtained from the plate kinematics of the North Atlantic shows that from Late Cretaceous to Late Paleocene (anomaly 34 to 25) Greenland moved obliquely to Ellesmere Island. It is suggested that most of this motion was taken up within the Canadian Arctic Islands resulting in little or no motion along Nares Strait between Greenland and Ellesmere Island. From Late Paleocene to mid-Eocene (anomaly 25-21) Greenland continued to move obliquely, resulting in a displacement of 125 km along and of 90 km normal to the Nares Strait. From mid-Eocene to early Oligocene another 100 km of motion took place normal to the Strait, which correlates well with the Eurekan Orogeny in the Canadian Arctic Island. During these times the relative motion between Greenland and Svalbard (Eurasian plate) was mainly strike-slip with a small component of compression. The implication of the resulting motion between the North American and the Eurasian plates onto the Siberian platform are discussed.  相似文献   

3.
Chronology of the last recession of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
A new deglaciation chronology for the ice‐free parts of Greenland, the continental shelf and eastern Ellesmere Island (Canada) is proposed. The chronology is based on a new compilation of all published radiocarbon dates from Greenland, and includes crucial new material from southern, northeastern and northwestern Greenland. Although each date provides only a minimum age for the local deglaciation, some of the dates come from species that indicate ice‐proximal glaciomarine conditions, and thus may be connected with the actual ice recession. In addition to shell dates, dates from marine algae, lake sediments, peat, terrestrial plants and driftwood also are included. Only offshore and in the far south have secure late‐glacial sediments been found. Other previous reports of late‐glacial sediments (older than 11.5 cal. kyr BP) from onshore parts of Greenland need to be confirmed. Most of the present ice‐free parts of Greenland and Nares Strait between Greenland and Ellesmere Island were not deglaciated until the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Approximately 400,000 line kilometers of high quality, low level Arctic aeromagnetic data collected by the Naval Research Laboratory, the Naval Oceanographic Office and the Naval Ocean Reseach and Development Activity from 1972 through 1978 have been analyzed for depth to magnetic source. This data set covers much of the Canada Basin, the Alpha Ridge, the central part of the Makarov Basin, the Lincoln Sea, the Eurasia Basin west and south of the 55°E meridian and the Norwegian-Greenland Sea north of the Jan Mayen Fracture Zone. The analysis uses the autocorrelation algorithm developed by Phillips (1975, 1978) and based on the maximum entropy method of Burg (1967, 1968, 1975). The method is outlined, examples of various error analysis techniques shown and final results presented. Where possible, magnetic source depth estimates are compared with basement depths derived from seismic and bathymetric data.All major known bathymetric features, including Vesteris Bank and the Greenland, Molloy and Spitsbergen fracture zones, as well as the Mohns, Knipovich and Nansen spreading ridges and the Alpha Cordillera appear as regional highs in the calculated magnetic basement topography. Shallow basement was also found under the northeastern Yermak Plateau, the Morris Jesup Rise and under the southern (Greenland-Ellesmere Island) end of the Lomonsosov Ridge. Regional magnetic source deeps are associated with such bathymetric depressions as the Canada, Makarov, Amundsen, Nansen, Greenland and Lofoten basins; more localized magnetic basement deeps are found over the Molloy F.Z. deep and over the Mohns, Knipovich and Nansen rift valleys. A linear magnetic basement deep follows the extension of Nares Strait through the Lincoln Sea toward the Morris Jesup Rise, suggesting the continuation of the Nares Strait or Wegener F.Z. into the Lincoln Sea. A sharp drop in the regional magnetic source depths to the southeast of the Alpha Ridge suggests the Alpha Ridge is not connected to structures in northwest Ellesmere Island as previously postulated from high altitude aeromagnetic collected by Canadian workers. A regional deep under the east Greenland shelf west of the Greenland Escarpment suggests the presence of 5–10 km of post-Paleozoic sediments.  相似文献   

5.
Paleogene sediments in fault-bounded basins on Judge Daly Promontory, northeast Ellesmere Island, Canadian High Arctic, are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait were studied for their petrography, geochemistry, Sr and Nd isotopes, and geochronology to identify and characterize their parent rock. The pebbles are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite, the proposed Nares Strait volcanic suite, which is distinct from other alkaline volcanic suites on the northern coasts of Ellesmere Island and Greenland. 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation resulting in Middle to Late Paleocene age for deposition within the Cape Back basin and the other Paleogene basins on Judge Daly Promontory.  相似文献   

6.
格陵兰海海冰外缘线变化特征分析   总被引:2,自引:0,他引:2  
格陵兰海作为北冰洋的边缘海之一,容纳了北极输出的海冰,其海冰外缘线的变化既受北极海冰输出量的影响,也受局地海冰融化和冻结过程的影响。利用2003年1月到2011年6月AMSR-E卫星亮温数据反演的海冰密集度产品,对格陵兰海海冰外缘线的变化特征进行了分析。结果表明,格陵兰海海冰外缘线不仅存在一年的变化周期,还存在比较显著的半年变化周期,与海冰在春秋两季向岸收缩有关。格陵兰海冬季的海冰外缘线极大值呈逐年下降的趋势,体现了北极增暖导致的冬季海冰范围减小;而夏季海冰外缘线离岸距离的极小值呈上升趋势,表明夏季来自北冰洋的海冰输出量增大。2003—2004年是格陵兰海夏季海冰融化最严重的2年。2007年北冰洋夏季海冰覆盖范围达到历史最小;而格陵兰海夏季的最小海冰范围最大,表明2007年北冰洋海冰的输出量大于其他年份。此外,夏季格陵兰岛冰雪融化形成的地表径流对海冰外缘线有一定的影响。对海冰外缘线影响最大的不是格陵兰海的局地风场,而是弗拉姆海峡(Fram Strait)区域的经向风,它直接驱动了北冰洋海冰向格陵兰海的输运,进而对格陵兰海海冰外缘线的分布产生滞后的影响。  相似文献   

7.
The extent of glacier ice in the Canadian High Arctic during the Last Glacial Maximum (LGM) has been debated for decades. One school proposed a regional Innuitian Ice Sheet whereas another proposed a smaller, non-contiguous Franklin Ice Complex. Research throughout western Nares Strait supports coalescent Innuitian and Greenland ice during the LGM, based on widespread glacial and marine deposits dated by 14C and amino acid analyses. This coalescence likely promoted a vigorous regional ice flow westward across Ellesmere Island to Eureka Sound. Post-glacial emergence in Eureka Sound suggests a former ice thickness at least as great as that in Nares Strait (≥ 1 km). Recently, independent field studies elsewhere in the High Arctic also support an Innuitian Ice Sheet during the LGM. Collectively, these studies resolve a long-standing debate, and initiate new opportunities concerning the reconstruction of high-latitude palaeoenvironmental and palaeoclimatic change. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Recent geophysical measurements, including multi-channel seismic reflection, on the Svalbard passive margin have revealed that it has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. The western margin (75–80°N) is of a sheared-rifted type, along which the rifted margin developed subsequent to a change in the pole of plate rotation about 36 m.y. B.P. The north-trending Hornsund Fault on the central shelf and the eastern escarpment of the Knipovich Ridge naturally divide the margin into three structural units. These main marginal structures strike north, paralleling the regional onshore fault trends. This trend also parallels the direction of Early Tertiary plate motion between Svalbard and Greenland. Thus, the western Svalbard margin was initially a zone of shear, and the shear movements have affected the adjacent continental crust. Although, the nature and location of the continent—ocean crustal transition is somewhat uncertain, it is unlikely to lie east of the Hornsund Fault. The northern margin, including the Yermak marginal plateau, is terminated to the west by the Spitsbergen Fracture Zone system. This margin is of a rifted type and the preliminary analysis indicates that the main part of the investigated area is underlain by continental crust.  相似文献   

9.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

10.
Prolonged intraplate volcanism along the 4000 km-long East Australian margin for ca 100 Ma raises many genetic questions. Studies of the age-progressive pulses embedded in general basaltic activity have spawned a host of models. Zircon U–Pb dating of inland Queensland central volcanoes gives a stronger database to consider the structure and origin of Australian age-progressive volcanic chains. This assists appraisal of this volcanism in relation to plate motion and plate margin tectonic models. Inland Queensland central volcanoes progressed south-southeast from 34 to 31 Ma (~5.4 cm/yr) until a surge in activity led to irregular southerly progression 31 to 28 Ma. A new inland southeastern Queensland central volcano line (25 to 22 Ma), from Bunya Mountains to North Main Range, followed 3 Ma behind the adjacent coastal progression. The Australian and Tasman Sea age-progressive chains are compared against recent plate motion modelling (Indian Ocean hotspots). The chain lines differ from general vector traces owing to west-facing swells and cessations in activity. Tectonic processes on the eastern plate margin may regulate these irregularities. These include subduction, rapid roll-back and progressive detachment of the Loyalty slab (43 to 15 Ma). West-flowing Pacific-type asthenosphere, related to perturbed mantle convection, may explain the west-facing volcanic surges. Such westward Pacific flow for over 28 Ma is known at the Australian–Antarctic Discordance, southeast of the present Australian plume sites under Bass Strait–West Tasman Sea. Most basaltic activity along eastern Australia marks asthenospheric melt injections into Tasman rift zone mantle and not lithospheric plate speed. The young (post-10 Ma) fields (Queensland, Victoria–South Australia) reflect new plate couplings, which altered mantle convection and stress regimes. These areas receive asthenospheric inputs from deep thermal zones off northeast Queensland and under Bass Strait.  相似文献   

11.
According to geologic reconstructions, the motion of the Sierran-Great Valley block with respect to the Colorado Plateau was mainly westerly at more than 20 mm/yr from 16 to 10 Ma, changing to northwest or NNW since 8 to 10 Ma, at an average rate of 15 mm/yr. These kinematics are consistent with two other independent methods of determining the position of the block since 20 Ma–reconstructions based on paleomagnetic data from range blocks that bound the Basin and Range on the west, and a revised history of Pacific-North America plate motion based on a global plate circuit (Atwater and Stock, 1998, this issue). The plate-tectonic reconstruction shows a change to more northerly motion between the Pacific and North American plates at ~8 Ma, in concert with the motion of the Sierran-Great Valley block. Moreover, the northeast limit of extant oceanic crust (as indicated by the reconstruction of the continental geology) tracks closely with the southwest limit of extant continental crust (as indicated by the positions of oceanic plates) since 20 Ma. The coordination between plate motions and the intraplate geology suggests that plate-boundary forces strongly influenced deformation within the continent.  相似文献   

12.
Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenland ice sheets during the last glaciation. This paper focuses on the events and processes leading to the opening of the strait and the environmental response to establishment of the Arctic‐Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon‐dated cores 2001LSSL‐0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with ΔR = 220±20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice‐proximal (red/grey laminated, ice‐proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice‐rafted debris) to ice‐distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. We hypothesize that a distinct IRD layer deposited between 9.3 and 9 (9.4–8.9 1σ) cal. ka BP marks the break‐up of ice in Kennedy Channel resulting in the opening of Nares Strait as an Arctic‐Atlantic throughflow. Overlying foraminiferal assemblages indicate enhanced marine productivity consistent with entry of nutrient‐rich Arctic Surface Water. A pronounced rise in agglutinated foraminifers and sand‐sized diatoms, and loss of detrital calcite characterize the uppermost bioturbated mud, which was deposited after 4.8 (3.67–5.55 1σ) cal. ka BP. The timing of the transition is poorly resolved as it coincides with the slow sedimentation rates that ensued after the ice margins retreated onto land.  相似文献   

13.
地球表层运动和变形的GPS描述   总被引:3,自引:1,他引:3  
黄立人  郭良迁 《地学前缘》2003,10(Z1):17-21
利用IERS所公布的分在全球各大构造板块上的 6 5 7个GPS、SLR和VLBI连续观测站在ITRF框架下的速度场资料 ,采用刚体板块运动 +板块整体均匀应变 +板块内局部不均匀应变的变形分析模型 ,研究了全球各主要板块的运动和变形。结果表明板块的整体变形在统计上均不显著。在一级近似上板块间表现出来的整体相对运动显著 ,根据这些运动参数定量研究了板块边界的相对运动的大小和性质。认为地球的双重不对称变形可能主要表现为南北、东西两半球所含的板块边界的运动方式不同所致。板块内的局部不均匀变形明显 ,为板块内部可能应划分成次一级的活动地块提供了佐证。由于观测点分布的密度和均匀性不足 ,本文未能就板内不均匀变形作进一步的深入讨论。  相似文献   

14.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   

15.
Zvi Garfunkel 《Tectonophysics》1981,80(1-4):81-108
The structures along the Dead Sea transform (rift) are related to the motions of the Sinai and Arabia plates which border it, and to the irregularities of their boundaries. The total slip was 105 km left-lateral, but the present structures were formed mainly during the last 40 km of slip, which probably occurred in the Plio-Pleistocene. Along the southern half of the transform the strike-slip motion takes place on en-echelon faults. This produces rhomb-shaped grabens or pull-aparts, which are sometimes composite, and in which there is local crustal separation. Thus, much of the transform is “leaky”. These structures occur in a morpho-tectonic “rift-valley” delimited by normal faults, which express a small component of transverse extension. Along a few segments the shape of the transform is such that lateral motion produces local transverse compression. The geometric relations of the structures along the transform define an Eulerian pole of relative plate motions at 32.8° N 22.6° E ± 0.5°. The older motion was somewhat different and is described by a pole located about 5° west of the above. Then the component of transverse extension and crustal separation was much smaller than now, while local transverse compression was more important. The northern half of the Dead Sea transform has an irregular shape, and the bordering plates did not remain rigid as lateral motion continued. Here transverse compression is often important.  相似文献   

16.
Along a 70 km section of western Kennedy Channel three prominent weathering zones are identified and serve to differentiate major events in the Quaternary landscape. The oldest zone (Zone 111b) is characterized by a deeply weathered, erratic-free terrain which extends from the mountain summits down to ca. 470 m above sea level. This zone shows no evidence of former glacierization. Zone 111a extends from ca. 470 to 370m above sea level and is characterized by sparse granite, gneiss and quartzite erratics amongst weathered bedrock and extensive, oxidized colluvium. The Precambrian provenance and uppermost profile of these erratics reflect the maximum advance of the northwest Greenland Ice Sheet onto northeastern Ellesmere Island. These uppermost erratics along western Kennedy Channel decrease in elevation southward and suggest that the former Greenland ice was thickest in the direction of the major outlet of Petermann Fiord. No evidence of a former ice ridge in Nares Strait was observed. Zone II is marked by the moraines of the outermost Ellesmere Island ice advance which form a prominent morpho-stratigraphic boundary where they cross-cut the zone of Greenland erratics at ca. 250–350 m above sea level. These moraines show advanced surface weathering and ice recession from them is associated with a pre-Holocene shoreline at 162 m above sea level. Late Wisconsin/Würm glacial deposits, equivalent to Zone I, were not observed in the lower valleys bordering Kennedy Channel. The outermost Ellesmere Island ice advance (Zone II) is radiometrically bracketed by 14C dates on in situ shells from subtill and supratill marine units which are 40,350±750 and>39,000 B.P., respectively. Amino acid age estimates on the same shell samples and others from similar stratigraphic positions all suggest ages of >35,000 B.P. Stratigraphically and chronologically this ice advance is correlated with the outermost Ellesmere Island ice advance 20–40 km to the north which formed small ice shelves when the relative sea level was ca. 175 m above sea level. The Holocene marine transgression along western Kennedy Channel occurred in an ice-free corridor maintained between the separated margins of the northwest Greenland and northeast Ellesmere Island ice sheets during the last glaciation. Initial emergence may have begun ca. 12,300 B.P., however, sea level had dropped only 15 m by ca. 8000 B.P. after which glacio-isostatic unloading of the corridor was rapid. The implications of these data are discussed in the context of existing models on high latitude glaciation and paleoclimatic change  相似文献   

17.
李洪梁  黄海  李元灵  张佳佳  王灵  李宝幸 《地球科学》2022,47(12):4523-4545
板块缝合带作为特殊类型的“断层”,其地质灾害效应是工程地质与灾害地质研究的重要内容,对工程建设具有重大现实意义.受特提斯洋复杂而漫长的构造演化制约,川藏交通廊道穿越了7条板块缝合带,但对其地质灾害效应的研究却鲜有涉及.为此,在搜集整理已有研究成果的基础上,结合野外地质调查和室内研究,简要分析了川藏交通廊道沿线板块缝合带的地质灾害效应,并探讨其内在机理.结果表明:板块缝合带地质灾害效应主要表现在塑造地貌、创造地形条件,劣化岩体、提供物质来源,控制地质灾害的分布和诱发地质灾害(链)等4方面.构造混杂岩因其复杂的地质演化过程和特殊的岩石类型与组合特征,使其天然具有易灾性,而板块缝合带就位过程中的构造运动是地质灾害效应的内生动力.板块缝合带的地质灾害效是贯穿于川藏交通廊道沿线板块缝合带构造演化过程中的内、外动力地质作用耦合的外在表现形式.板块缝合带地质灾害效应研究目前处于起步阶段,建议在加强基础地质与灾害地质精细化调查的基础上深化其认识;川藏交通建设工程应加强板块缝合带工程效应研究,加大地质灾害监测预警系统研发,以确保其安全施工与后期平稳运行.   相似文献   

18.
A pronotal fragment of Amara alpina (Paykull) was found among interstadial organic detritus from the Thule area, northwest Greenland. Nowadays the species is absent from Greenland, in spite of occurrences immediately on the western side of the Davis Strait. The species would undoubtedly be able to live in the greater part of Greenland, but probably has not yet succeeded in reaching the country after the Last Glaciation.  相似文献   

19.
Seismic slip vectors along the Japan Trench, the eastern margin of the Japan Sea and the Sagami Trough are compared with global relative plate motions (RM2, Minster and Jordan, 1978) to test a new hypothesis that northern Honshu, Japan, is part of the North American plate. This hypothesis also claims that the eastern margin of the Japan Sea is a nascent convergent plate boundary (Kobayashi, 1983; Nakamura, 1983).Seismic slip vectors along the Japan Trench are more parallel to the direction of the Pacific-North American relative motion than that of the Pacific-Eurasian relative motion. However, the difference in calculated relative motions is too small avoid to the possibility that a systematic bias in seismic slip vectors due to anomalous velocity structure beneath island arcs causes this apparent coincidence. Seismic slip vectors and rates of shortening along the eastern margin of the Japan Sea for the past 400 years are also consistent with the relative motion between the North American and Eurasian plates calculated there. Seismic slip vectors and horizontal crustal strain patterns revealed by geodetic surveys in south Kanto, beneath which the Philippine Sea plate is subducting, indicate two major directions; one is the relative motion between the North American and Philippine Sea plates, and the other that between the Eurasian and Philippine Sea plates.One possible interpretation of this is that the eastern margin of the Japan Sea may be in an embryonic stage of plate convergence and the jump of the North American-Eurasian plate boundary from Sakhalin-central Hokkaido to the eastern margin of the Japan Sea has not yet been accomplished. In this case northern Honshu is a microplate which does not have a driving force itself and its motion is affected by the surrounding major plates, behaving as part of either the Eurasian or North American plate. Another possibility is that the seismic slip vectors and crustal deformations in south Kanto do not correctly represent the relative motion between plates but represent the stresses due to non-rigid behaviors of part of northern Honshu.  相似文献   

20.
Applications of plate tectonic concepts to problems of continental geology are hampered by the lack of direct evidence from the sea floor of pre-Cretaceous plate motions, since oceanic crust is continually destroyed by subduction in trenches. Studies on the structural geometry of Jurassic ring-dike provinces in Africa and North America, however, reveal patterns closely correlated with predicted plate motions. These ring complexes are commonly discordant to major crustal structures and show many features indicative of deep-seated origin. Ring-dike provinces probably form when continents drift over fixed plumes (hot-spots) in the asthenosphere and thereby provide unique tracks of pre-Cenozoic continental plate motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号