首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   

2.
The extent of glacier ice in the Canadian High Arctic during the Last Glacial Maximum (LGM) has been debated for decades. One school proposed a regional Innuitian Ice Sheet whereas another proposed a smaller, non-contiguous Franklin Ice Complex. Research throughout western Nares Strait supports coalescent Innuitian and Greenland ice during the LGM, based on widespread glacial and marine deposits dated by 14C and amino acid analyses. This coalescence likely promoted a vigorous regional ice flow westward across Ellesmere Island to Eureka Sound. Post-glacial emergence in Eureka Sound suggests a former ice thickness at least as great as that in Nares Strait (≥ 1 km). Recently, independent field studies elsewhere in the High Arctic also support an Innuitian Ice Sheet during the LGM. Collectively, these studies resolve a long-standing debate, and initiate new opportunities concerning the reconstruction of high-latitude palaeoenvironmental and palaeoclimatic change. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The motion of Greenland relative to Ellesmere Island along Nares Strait is determined from poles of rotation which provide control for the motion independent of local geology and geophysics. The plate kinematics around the North Atlantic Ocean, the Norwegian and Greenland Seas and the Eurasian Basin of the Arctic Ocean constrain motion along Nares Strait. These motions are checked by examining the stability characteristics of the triple junctions. These junctions are found to be stable. The motion along Nares Strait between anomalies 34 and 13 is a combination of strike-slip and compression. The regional geology is found to support the plate reconstructions. The local geology of the Nares Strait area is reviewed and found not to refute the predicted motions. The geophysical and geological data are interpreted in terms of the Wilson cycle, the opening and closing of an ocean. The Nares Strait area has the characteristics of a cryptic suture, a join between regions of collided continental crust.  相似文献   

4.
A combined analysis of the recently collected aeromagnetic data from the Eurasian Basin with the magnetic data from the Labrador Sea, the Norwegian-Greenland Sea and the North Atlantic yields a plate kinematic solution for the Eurasian Basin which is consistent with the solution for the North Atlantic as a whole. It shows that the Eurasian Basin and Norwegian-Greenland Sea started to evolve at about anomaly 25 time, though active seafloor spreading did not start in either of these regions until anomaly 24 time. It further shows that the spreading in the Eurasian Basin has been a result of motion only between the North American and Eurasian plates since the beginning, with the Lomonosov Ridge remaining attached to the North American plate. The relative motion among the North American, Greenland and Eurasian plates as obtained from the plate kinematics of the North Atlantic shows that from Late Cretaceous to Late Paleocene (anomaly 34 to 25) Greenland moved obliquely to Ellesmere Island. It is suggested that most of this motion was taken up within the Canadian Arctic Islands resulting in little or no motion along Nares Strait between Greenland and Ellesmere Island. From Late Paleocene to mid-Eocene (anomaly 25-21) Greenland continued to move obliquely, resulting in a displacement of 125 km along and of 90 km normal to the Nares Strait. From mid-Eocene to early Oligocene another 100 km of motion took place normal to the Strait, which correlates well with the Eurekan Orogeny in the Canadian Arctic Island. During these times the relative motion between Greenland and Svalbard (Eurasian plate) was mainly strike-slip with a small component of compression. The implication of the resulting motion between the North American and the Eurasian plates onto the Siberian platform are discussed.  相似文献   

5.
Volcanic rocks, mainly of intermediate composition, occupy several basins within the rift zone along which the Yangtze River flows in its lower reaches. Potassium‐argon (K‐Ar) age measurements on minerals and whole rock samples from lavas and syenitic intrusives in the Lujiang‐Tzungyang volcanic basin range from 131 to 123 m.y., and biotites from two lavas in the Nanjing‐Wuhu basin have measured ages of 127 and 130 m.y. Incremental heating experiments by the 40Ar/39Ar method on biotite from two volcanic rocks, one from each basin, yield simple age spectra with plateau ages of 129 to 130 m.y. These data provide evidence that the two biotites have remained undisturbed since crystallisation. The combined results show that volcanism was contemporaneous within the two basins in the Early Cretaceous. Vol‐canism in the Yangtze Volcanic Zone is thought to be related to adjustments within the Eurasian plate as a consequence of collision between the earlier Pacific (Kula) plate and the Eurasian plate.  相似文献   

6.
We present a comprehensive geochemical data set for a suite of back-arc alkaline volcanic rocks from James Ross Island Volcanic Group (JRIVG), Antarctic Peninsula. The elemental and isotopic (Sr, Nd, Pb and Li) composition of these Cenozoic basalts emplaced east of the Antarctic Peninsula is different from the compositions of the fore-arc alkaline volcanic rocks in Southern Shetlands and nearby Bransfield Strait. The variability in elemental and isotopic composition is not consistent with the JRIVG derivation from a single mantle source but rather it suggests that the magma was mainly derived from a depleted mantle with subordinate OIB-like enriched mantle component (EM II). The isotopic data are consistent with mantle melting during extension and possible roll-back of the subducted lithosphere of the Antarctic plate. Magma contamination by Triassic–Early Tertiary clastic sediments deposited in the back-arc basin was only localized and affected Li isotopic composition in two of the samples, while most of the basalts show very little variation in δ7Li values, as anticipated for “mantle-driven” Li isotopic composition. These variations are difficult to resolve with radiogenic isotope systematics but Li isotopes may prove sensitive in tracking complex geochemical processes acting through the oceanic crust pile, including hydrothermal leaching and seawater equilibration.  相似文献   

7.
Chronology of the last recession of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
A new deglaciation chronology for the ice‐free parts of Greenland, the continental shelf and eastern Ellesmere Island (Canada) is proposed. The chronology is based on a new compilation of all published radiocarbon dates from Greenland, and includes crucial new material from southern, northeastern and northwestern Greenland. Although each date provides only a minimum age for the local deglaciation, some of the dates come from species that indicate ice‐proximal glaciomarine conditions, and thus may be connected with the actual ice recession. In addition to shell dates, dates from marine algae, lake sediments, peat, terrestrial plants and driftwood also are included. Only offshore and in the far south have secure late‐glacial sediments been found. Other previous reports of late‐glacial sediments (older than 11.5 cal. kyr BP) from onshore parts of Greenland need to be confirmed. Most of the present ice‐free parts of Greenland and Nares Strait between Greenland and Ellesmere Island were not deglaciated until the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
周江羽  王江海 《地质学报》2019,93(8):1793-1813
青藏高原中东部分布着一系列中小型古近纪断陷盆地和走滑-拉分盆地。印度-欧亚板块碰撞已引起盆地构造、沉积和岩浆活动等地质事件的响应。古近纪断陷盆地和走滑-拉分盆地中广泛分布的巨厚粗碎屑岩充填、新特提斯海湾消亡、大规模地壳挤压褶皱冲断和高钾岩浆活动、周缘前陆盆地形成、干旱-温暖极热事件以及古近纪盆地的封闭和裂解等。详细的野外地质调查、盆地构造-沉积学、生物地层学和岩浆岩同位素年代学研究结果表明,北部玉树-囊谦地区断陷盆地发生了大规模挤压掀斜和冲断,在盆缘形成高陡地层和挤压向斜,盆地内地层发生明显的褶皱变形。盆地内部充填了巨厚层状底砾岩、紫红色陆源碎屑岩夹火山碎屑岩、碳酸盐岩和石膏层,并被晚期岩浆岩所切割。南部巴塘-丽江地区形成走滑-拉分盆地。区域地层对比、细碎屑岩内孢粉和古植物、火山碎屑岩和侵入岩的U- Pb和40Ar/39Ar年代学结果表明,盆地内充填沉积物形成于始新世(56~32 Ma)。古近纪紫红色细粒沉积物、碳酸盐岩和石膏层的出现表明盆地封闭期处于干旱-炎热的古气候环境。38~32 Ma是自印度-欧亚板块陆-陆碰撞以来,青藏高原中东部从转换挤压到转换伸展的过渡阶段,出现了大规模高钾火山喷发和随后的岩浆侵入,并导致青藏高原中东部古近纪盆地的封闭和裂解。北部盆地的封闭时间(约37 Ma)早于南部盆地的裂解(约32~28 Ma)。青藏高原中东部古近纪盆地的封闭和裂解主要是自约38 Ma以来,印度-欧亚板块碰撞引起的陆壳挤压、变形和缩短,及由高原早期构造隆升诱导的逆冲挤压和走滑拉分引起的。  相似文献   

9.
Along a 70 km section of western Kennedy Channel three prominent weathering zones are identified and serve to differentiate major events in the Quaternary landscape. The oldest zone (Zone 111b) is characterized by a deeply weathered, erratic-free terrain which extends from the mountain summits down to ca. 470 m above sea level. This zone shows no evidence of former glacierization. Zone 111a extends from ca. 470 to 370m above sea level and is characterized by sparse granite, gneiss and quartzite erratics amongst weathered bedrock and extensive, oxidized colluvium. The Precambrian provenance and uppermost profile of these erratics reflect the maximum advance of the northwest Greenland Ice Sheet onto northeastern Ellesmere Island. These uppermost erratics along western Kennedy Channel decrease in elevation southward and suggest that the former Greenland ice was thickest in the direction of the major outlet of Petermann Fiord. No evidence of a former ice ridge in Nares Strait was observed. Zone II is marked by the moraines of the outermost Ellesmere Island ice advance which form a prominent morpho-stratigraphic boundary where they cross-cut the zone of Greenland erratics at ca. 250–350 m above sea level. These moraines show advanced surface weathering and ice recession from them is associated with a pre-Holocene shoreline at 162 m above sea level. Late Wisconsin/Würm glacial deposits, equivalent to Zone I, were not observed in the lower valleys bordering Kennedy Channel. The outermost Ellesmere Island ice advance (Zone II) is radiometrically bracketed by 14C dates on in situ shells from subtill and supratill marine units which are 40,350±750 and>39,000 B.P., respectively. Amino acid age estimates on the same shell samples and others from similar stratigraphic positions all suggest ages of >35,000 B.P. Stratigraphically and chronologically this ice advance is correlated with the outermost Ellesmere Island ice advance 20–40 km to the north which formed small ice shelves when the relative sea level was ca. 175 m above sea level. The Holocene marine transgression along western Kennedy Channel occurred in an ice-free corridor maintained between the separated margins of the northwest Greenland and northeast Ellesmere Island ice sheets during the last glaciation. Initial emergence may have begun ca. 12,300 B.P., however, sea level had dropped only 15 m by ca. 8000 B.P. after which glacio-isostatic unloading of the corridor was rapid. The implications of these data are discussed in the context of existing models on high latitude glaciation and paleoclimatic change  相似文献   

10.
Approximately 400,000 line kilometers of high quality, low level Arctic aeromagnetic data collected by the Naval Research Laboratory, the Naval Oceanographic Office and the Naval Ocean Reseach and Development Activity from 1972 through 1978 have been analyzed for depth to magnetic source. This data set covers much of the Canada Basin, the Alpha Ridge, the central part of the Makarov Basin, the Lincoln Sea, the Eurasia Basin west and south of the 55°E meridian and the Norwegian-Greenland Sea north of the Jan Mayen Fracture Zone. The analysis uses the autocorrelation algorithm developed by Phillips (1975, 1978) and based on the maximum entropy method of Burg (1967, 1968, 1975). The method is outlined, examples of various error analysis techniques shown and final results presented. Where possible, magnetic source depth estimates are compared with basement depths derived from seismic and bathymetric data.All major known bathymetric features, including Vesteris Bank and the Greenland, Molloy and Spitsbergen fracture zones, as well as the Mohns, Knipovich and Nansen spreading ridges and the Alpha Cordillera appear as regional highs in the calculated magnetic basement topography. Shallow basement was also found under the northeastern Yermak Plateau, the Morris Jesup Rise and under the southern (Greenland-Ellesmere Island) end of the Lomonsosov Ridge. Regional magnetic source deeps are associated with such bathymetric depressions as the Canada, Makarov, Amundsen, Nansen, Greenland and Lofoten basins; more localized magnetic basement deeps are found over the Molloy F.Z. deep and over the Mohns, Knipovich and Nansen rift valleys. A linear magnetic basement deep follows the extension of Nares Strait through the Lincoln Sea toward the Morris Jesup Rise, suggesting the continuation of the Nares Strait or Wegener F.Z. into the Lincoln Sea. A sharp drop in the regional magnetic source depths to the southeast of the Alpha Ridge suggests the Alpha Ridge is not connected to structures in northwest Ellesmere Island as previously postulated from high altitude aeromagnetic collected by Canadian workers. A regional deep under the east Greenland shelf west of the Greenland Escarpment suggests the presence of 5–10 km of post-Paleozoic sediments.  相似文献   

11.
青藏高原东缘古近纪粗碎屑岩沉积学及其构造意义   总被引:10,自引:0,他引:10       下载免费PDF全文
青藏高原东缘古近纪盆地的填图和沉积学研究表明,在青藏高原东缘区域性走滑-挤压构造背景下形成的古近纪盆地内广泛发育厚层—巨厚层状的紫红色粗碎屑岩系。其沉积特征指示为一种近源快速堆积的泥石流和辫状河道沉积体,形成于干旱炎热气候条件下的典型陆内冲积扇环境。盆地充填序列、粗碎屑岩层序、动植物化石和盆地内岩浆岩~(40)Ar-~(39)Ar年代学等综合研究结果表明,古近纪盆地内粗碎屑岩大约形成于38~29 Ma。该时期与青藏高原东缘北段(横断山地区)古近纪盆地的形成和南段(兰坪—思茅地区)大盆地的裂解时间基本一致,这很可能预示着青藏高原在晚始新世—早渐新世期间曾发生过整体的快速构造隆升。  相似文献   

12.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

13.
On the basis of foraminifers In the section through the Cenozoic deposits of Karagin Island, we distinguish the Eocene (the Cape Tons and Mt. Peresheyek suites), Oligocene (the Il'khatun suite and the Laternula sandstones), and Miocene deposits and describe their paleontological characteristics. We identify 18 assemblages of foraminifera, correlating the Paleogene deposits on Karagin Island with the synchronous deposits to Japan and California. The Cape Tons and Mt. Peresbeyek suites are correlated with the Sakasegawa and Poronai formations in Japan and with deposits of the Narizian and Refugian stages to California. —Authors.  相似文献   

14.
Fifteen new K–Ar ages in the range of 79–31 Ma are partially confirmed by three 40Ar/39Ar plateaus and isochron data of 64.9±0.4, 55.5±0.1 and 52.8±0.6 Ma. The new geochronological data reveal a much more detailed picture of the subduction imprint in the Hurd Peninsula. Using cutting relationships, the dyke emplacement history is divided into four episodes. The Late Cretaceous–Paleocene dykes in the range of 80–60 Ma are related to the main magmatism in Livingston Island and most likely reflect the final stages of subduction of the proto-Pacific oceanic crust. The Early Eocene dykes (56–52 Ma) fill the gap in volcanic activity 70–50 Ma ago. They are the only magmatic event manifested at this time in the region. The 45–42 Ma dykes may be related to the intrusion of the Barnard Point tonalite. Three samples of Oligocene age appear to represent the last igneous activities on the Hurd Peninsula prior to the opening of the Bransfield Strait.  相似文献   

15.
The Antarctic Peninsula has been part of a magmatic arc since at least Jurassic times. The South Shetland Islands archipelago forms part of this arc, but it was separated from the Peninsula following the Pliocene opening of the Bransfield Strait. Dikes are widespread throughout the archipelago and are particularly accessible on the Hurd Peninsula of Livingston Island. The host rocks for the dikes are represented by the Miers Bluff Formation, which forms the overturned limb of a large-scale fold oriented 63/23 NW. The orientation of minor structures indicates a fold axis oriented NNE–SSW (24/0). Structural analysis of the dikes and their host rocks shows that the tectonic regime was similar to other parts of the archipelago and that only minor changes of the stress field occurred during dike emplacement.Based on crosscutting field relationships and geochemical data, six early Paleocene to late Eocene intrusive events can be distinguished on Hurd Peninsula. In contrast to calc-alkaline dikes from other parts of the South Shetland Islands, the majority of the Hurd Peninsula dikes are of tholeiitic affinity. Nd and Pb isotope data indicate a significant crustal component, particularly during initial magmatic activity.Plagioclase 40Ar/39Ar and whole rock K–Ar ages show that dike emplacement peaked during the Lutetian (48.3 ± 1.5, 47.4 ± 2.1, 44.5 ± 1.8 and 43.3 ± 1.7 Ma) on Hurd Peninsula and also further northeast on King George Island. Dike intrusion continued on Livingston Island at least until the Priabonian (37.2 ± 0.9 Ma). The type of magma sources (mantle, slab, crust and sediment) did not change, though their relative magmatic contributions varied with time.During Cretaceous and Early Paleogene times, the Antarctic Peninsula including the South Shetland Islands was situated southwest of Patagonia; final separation from South America occurred not before the Eocene. Thus, the geological evolution of Livingston Island is related as much to the development of Patagonia as of Antarctica, and needs to be considered within the history of southernmost South America.  相似文献   

16.
The Boa Vista and Cubati Basins, Paraíba, Brazil, are NW–SE extension-related intracratonic basins that resulted from tectonic stresses after the opening of the South Atlantic. These basins contain lacustrine fossiliferous sediments, bentonite beds, and basalt flows that preserve Cenozoic continental records. 40Ar/39Ar ages for six whole-rocks from two distinct basaltic flows underlying the sediments in the Boa Vista basin are 27.3 ± 0.8 and 25.4 ± 1.3 Ma, while three grains from a basaltic flow overlying the sediments yield 22.0 ± 0.2 Ma. The sediments at the nearby Cubati Basin are overlain by a basalt flow with ages of ∼25.4 Ma. Three whole-rocks from an NE–SW-trending trachytic dyke cross cutting the sediments at the Boa Vista Basin yield 40Ar/39Ar ages of ∼12.45 ± 0.06, 12.59 ± 0.07, and 12.58 ± 0.07 Ma. Three whole-rocks from a nearby volcanic plug (Chupador) yield an age of 23.4 ± 0.1 Ma. The geochronological results combined with stratigraphic correlations between the two basins allow bracketing the age of the main sedimentary and bentonic units within the Boa Vista and Cubati Basins between 25.5 ± 1.3 and 24.9 ± 0.1 Ma. The ages, combined with field observations reveal that the formation of the Boa Vista and Cubati basins is associated with mantle-derived magmas channelled through reactivated Precambrian shear zones. Our geochronological results suggest that a temporal link with the Fernando de Noronha and Saint Helena hot spots can be excluded as possible sources of the Boa Vista and Cubati magmas. Rather, the extensional tectonics in the 30–20 Ma interval, long after Gondwana break-up, may be associated with the re-activation of continental-scale shear zones that channelled small batches of mantle-derived magmas.  相似文献   

17.
The presence of a prominent volcanic ash enclosed within sediments of the Centinela Formation, southwestern Argentina, permits establishment of an 40Ar/39Ar age of approximately 46 Ma for these rocks. Oxygen isotopic analysis of shell material from the oyster Crassostrea? hatcheri Ortmann, 1897, suggests seasonal fluctuation of temperature from about 15°C to about 21°C. In concordance with this, a diverse crustacean fauna, including nine families within the order Decapoda and one within Isopoda, bears strong affinities with temperate and subtropical faunas of the Atlantic Ocean basin and documents the southernmost extension of low latitude oceanographic influence on this region during the Paleogene. Establishment of an Eocene age for the rocks in the Centinela Formation provides the first definitive documentation of rocks of that age in the region of Calafate, permits correlation of these rocks with Eocene strata southward to the vicinity of Rı́o Turbio, and suggests that these rocks, assigned to the Patagonian sequence, may be substantially older than those in eastern Argentina.  相似文献   

18.
19.
准噶尔盆地的类型和构造演化   总被引:35,自引:1,他引:34  
张晓东 《地学前缘》2000,7(4):431-440
准噶尔盆地的早二叠世属于裂谷还是前陆盆地 ,存在意见分歧 ;晚二叠世—老第三纪盆地的性质也不确定。文中通过对盆地构造几何学、沉降史、热史及火山岩的综合分析研究 ,对盆地类型和构造演化获得了一些新的认识 :( 1)准噶尔盆地在早二叠世为裂谷 ,晚二叠世为热冷却伸展坳陷 ,三叠纪—老第三纪为克拉通内盆地 ,新第三纪至今 ,由于印度板块与亚洲大陆碰撞才形成陆内前陆盆地。 ( 2 )对石炭纪—早二叠世的岩浆活动结合区域构造资料的研究表明 ,准噶尔地区古生代的板块运动和造山作用具软碰撞特点 ,早二叠世的裂谷盆地是在软碰撞背景下造山带伸展塌陷的产物。 ( 3)地幔热对流作用可能是软碰撞造山后伸展塌陷的主要深部动力学机制。  相似文献   

20.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号