首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
南华砷铊矿床雄黄标型特征   总被引:2,自引:1,他引:2  
雄黄是云南省南华砷铊矿床中最主要工业矿物。它不仅与铊矿物共生,而且本身含有较高的铊,可高达(n×10~n×100)×10-6。砷铊矿床雄黄与砷矿床雄黄相比较在产出条件,微量元素、硫同位素和晶面间距等方面均有不同程度差别。前者富铊,低氯、高氟和硼,富轻硫同位素,相对贫稀土元素;后春富氯,低铊,高碘,富重硫同位素,相对贫碱土族元素。这些标型特征不仅有助于南华砷铊矿床进一步开发,而且有助于含雄黄的热液矿床,特别是As、Hg、Tl、Sb、Au等矿床的找矿勘探。  相似文献   

2.
本文以贵州省印江县梵净山石柱岩铜砷矿床勘探地质成果资料①为依据,论述了矿床地质背景、矿床地质特征及控矿因素,并在此基础上阐明了成矿物质来源于该矿床附近的花岗岩。石柱岩铜砷矿的赋存与富集严格受花岗岩、辉绿岩、断层破碎带及硅化围岩蚀变的多重控制,含矿热液沿断层破碎带活化迁移,富集成矿。矿床成因类型为岩浆期后中温热液型铜砷矿床,其成矿时代归属武陵期。  相似文献   

3.
南华砷铊矿床碱金属碱土金属和稀土元素地球化学   总被引:2,自引:0,他引:2  
张忠  张兴茂  张宝贵 《矿物学报》1999,19(1):112-119
南华砷铊矿床位于云南省南华县不南,距县城55km。矿床主要产于上侏罗统江边组雄黄厂段,以砷和铊元素组合为特征,属于典型的低温热液改造矿床,通过矿床地质、碱金属、碱土金属和稀土元素的地球化学研究,对矿床成矿作用进行讨论。和流体是具有δCe和δEu负异常的酸性溶液,基本保留了矿源层的稀土分布模式。在成矿过程中亲石元素的亲硫元素均不同程度地参与在矿作用。  相似文献   

4.
中国雄黄雌黄矿床类型、成矿机制与找矿方向   总被引:1,自引:0,他引:1  
中国雄黄雌黄矿床,根据成矿作用、地质产状、成矿地质构造环境和地球化学特点分为三大类七种类型。即层控型(下关式单一雄黄矿床,水落式多金属雄黄矿床)、热水沉积型(界牌峪式雄黄雌黄矿床,松潘式金砷矿床)、热液型(石峡式辰砂、雌黄矿床,王庄式辉锑矿雄黄矿床和宁陕式金、钨、铊、雄黄矿床)。三大类矿床成矿机制各异。应在适宜的地层、大地构造区域,根据有利的矿物、地球化学等信息寻找该类矿床。  相似文献   

5.
南华砷铊矿床元素地球化学和成矿模式   总被引:29,自引:3,他引:26  
张忠  张兴茂 《地球化学》1998,27(3):269-275
南华砷铊矿床位于云南省南华县城东南,北距县城55km。矿床产于上侏罗统江边组雄黄厂段(J3^1c),以砷和铊元素组合为特征,属于典型的低温热液改造矿床。通过矿床地质、稀土元素和成矿模式的研究,对矿床成矿作用进行讨论。卤素,尤其氯是铊富集成矿的矿化剂,铊价态变化在富集成矿过程中具有重要作用。成矿流体是具有Ce和Eu负异常的酸性溶液,基本保留了矿源层的稀土分布模式。在成矿过程中亲石元素和亲硫元素均不同  相似文献   

6.
中国主要层控汞锑砷(雄黄、雌黄)矿床分类成矿模式与找矿   总被引:11,自引:0,他引:11  
张宝贵 《地球化学》1989,(2):131-138
中国层控汞、锑、砷矿床,根据成矿作用、地质产状和地球化学特点分为十种类型。即锡矿山式锑矿床、晴隆式锑矿床、湘西式钨锑金矿床、公馆式汞锑矿床、万山式汞矿床、务川式汞矿床、界牌峪式雄黄和雌黄矿床、水落式砷汞金矿床、丫他式砷锑金矿床和龙潭式砷铅铊矿床,它们在成因上与岩浆岩无关。成矿模式划分为沉积成岩(包括预富集)阶段或后生改造阶段。在层控汞、锑、砷矿床地球化学和成矿机制的研究基础上提出了找矿前提。  相似文献   

7.
福建紫金山铜矿是我国高硫化型浅成低温热液矿床研究的热点之一。本文针对该矿床中普遍发育的硫砷铜矿进行了仔细的矿相观察及电子探针化学成分分析,对其成因进行了初步研究。该矿床中硫化物矿物之间存在着一定的交代、穿插以及化学组分的继承关系。矿物生长遵循黄铁矿-硫砷铜矿-斜方蓝辉铜矿、蓝辉铜矿-铜蓝的交代生长顺序。结合室内水热反应模拟实验结果,推测矿床经历了2期、4阶段热液事件:第1期第1阶段形成黄铁矿;第2阶段形成硫砷铜矿;第2期第1阶段形成各种铜硫化物,铜蓝在第2期第2阶段形成。其中硫砷铜矿中的砷元素来自于岩浆热液,其显示出交代先成黄铁矿的特征,也有少量结晶于矿石的较大裂缝处形成自形柱状晶体。表生带中的硫化物矿物曝露在地表或潜水中遭受风化剥蚀,逐渐形成高硫型浅成热液,并沿构造裂隙持续下渗至岩体附近受热折返,在下渗和折返的过程中交代先成的黄铁矿和硫砷铜矿,生成斜方蓝辉铜矿和蓝辉铜矿等铜硫化物,该交代反应符合"耦合的溶解再沉淀"的成因机制。热液下渗和受热折返是1个循环往复的过程。  相似文献   

8.
农都柯矿床是在义敦岛弧带中首次发现的火山岩型浅成低温Au-Ag多金属矿床。该矿床产于弧后扩张分别地的勉戈组流纹岩中,受韧性剪切带控制,矿床中发育一套典型的低温热液矿物组合,包括辉锑铅矿、辉锑银铅矿、辉锑矿、砷黝铜矿、自然金、黄铁矿、闪锌矿、雌黄、雄黄、登红石(HgO)等。蚀变作用以硅化和绢云母化为主,伴生重晶石化和蒙脱石化。按照现行的火山岩型低温热液金-银矿床的分类原则,该矿床应属于高硫的酸性硫酸盐型。流体包裹体研究表明,主要成矿过程发生在221-130℃之间;成矿流体的温度与盐度演化趋势暗示着对矿床之下存在一隐伏岩浆房。硫、铅同位素显示成矿物质主要来自弧后火山岩,矿床是岩浆热液与大气降水对含矿火山岩(矿源层)联合作用的结果。  相似文献   

9.
砷氢化物是砷的重要迁移形式   总被引:4,自引:2,他引:4  
通过对砷氢化物的理化特性、形成条件,砷氢化物与纳米砷、硫、硫氢化物的亲合性、相关性,氢在太阳系尤其是对地球形成、演化的重大贡献,与内生砷矿物共伴生矿物的流体包裹体气相成分,内生砷矿物、含砷矿物的化学成分的探讨,认识到砷及砷合金氢化物是砷的重要迁移形式,它们随岩浆、热液、热气迁移至地壳浅部,被氧化成砷矿物,或与硫、硫氢化物作用生成硫砷化物矿物。  相似文献   

10.
砷,汞,锑,金矿床铊的赋存状态,成矿模式与找矿标志   总被引:7,自引:0,他引:7       下载免费PDF全文
张忠  龙江平 《地质论评》1995,41(4):363-370
研究表明,在砷、汞、锑、金矿床中普遍含有较高的铊,并发现富铊雄黄矿和铊单矿物。铊亲硫和新石地球化学性质铊赋存形式。在岩矿石中铊主要呈单矿物,分散状态铊占次要地位。根据富铊雄黄矿床成矿特点,铊赋存状态,岩矿石中铊含量及其与砷、汞、锑、金相关关系,尝试性提出成矿模式和找矿标志。  相似文献   

11.
对石门4处典型不同种类的含砷尾矿进行样品采集,并采用1种氧化菌(氧化亚铁硫杆菌,Thiobacillus ferrooxidans,简称T.f)和2种还原菌(硫酸盐还原菌,sulfate reducing bacteria,简称SR;嗜酸铁还原菌,Acidiphilium cryptum JF-5,简称JF-5)分别对其进行作用,据此研究生物还原和氧化条件下原生和次生含砷矿物的释砷情况,进而确定潜在的释砷风险。ICP-OES定量分析显示,3种细菌作用后,雄黄矿和雌黄矿的砷释出浓度都不断升高。168 h氧化菌T.f作用后的砷释出顺序为雌黄矿>淋滤液次生含砷矿物>雄黄矿>含砷夹矸尾矿。LC-AFS原子荧光分析释出液砷形态结果表明:①T.f作用后,雄黄矿和雌黄矿表现出非常明显的差异;1.5 h作用后4种含砷矿物释放As(Ⅴ)的顺序为含砷夹矸尾矿>雄黄矿>淋滤液次生含砷矿物>雌黄矿;②2种还原菌作用后,SR更能促进雌黄矿释放的As(Ⅲ),其释放量是JF-5的2倍;雌黄矿释出As(Ⅲ)在168 h达到20.64 mg/L(SR)和9.54 mg/L(JF-5)。96 h SR作用后4种含砷矿物释放As(Ⅲ)的顺序为雌黄矿>淋滤液次生含砷矿物>含砷夹矸尾矿>雄黄矿。96 h JF-5作用后4种含砷矿物释放As(Ⅲ)的顺序为雄黄矿>雌黄矿>含砷夹矸尾矿>淋滤液次生含砷矿物。  相似文献   

12.
中国西南地区煤中砷的含量与对比   总被引:4,自引:0,他引:4  
总结了中国西南云、贵、川、渝三省一市各主要含煤时代的主要煤层和各煤类煤中砷含量及其分布特征,并与国内外的资料进行了对比。通过分析,认为西南各省中以云南省砷含量最高,各成煤时代以寒武纪老地层中的石煤含量最高,而各煤种中以石煤和褐煤砷含量最高。  相似文献   

13.
卡林型金矿床中自然砷的特征与成矿物理化学条件示踪   总被引:5,自引:1,他引:4  
在"滇黔桂"、"川甘陕"两个金三角密集区内的某些卡林型金矿床中,自然砷矿物的存在并非个别现象。自然砷呈致密块状、致密凝胶体状(肾状)、脉状或微细脉状产出。自然砷呈他形粒状,颗粒大小变化较大,一般为0.05~0.50mm,最大可达2mm。反光显微镜下为白色,显微硬度为114.21~150.60kg/mm2,相当于摩氏硬度3.27~3.59。矿物主要化学成分As的质量分数为92.74%~99.74%,并含有S0.18%~5.25%,Sb0.04%~3.65%。矿物为三方晶系,晶胞参数值a=0.3759nm,c=1.0527nm。利用矿床中含砷矿物的共生组合特点及热力学资料,探讨了卡林型金矿床形成的温度、成矿流体的f(O2)、f(S2)变化范围及金以金砷络合物形式迁移的可能性。  相似文献   

14.
The Shimen realgar deposit is characterized by the pipi-shaped orebody and the development of silica sinter and hydrothermal explosive breccia which are typical of hot spring activity.Very similar trace-element associations are noticed between the silica cap and the breccia and modern hot spring waters in the area.The chemistr of ore-forming solutions is also well comparable with that of modern hot spring.,The spring system that gave rise to the mineralization was charged by ground waters heated through thermal conducting systems in the deep crust and,to a lesser extent,by geothermal gradient.ΔD,δ^18O,δ^13CCH4andδ^13CH4andδ^13CCO2values and ^40Ar/^36Ar and 3^He/^4He ratios indicate that the spring system is of crustal derivation.The ore-forming metals were supplied by surrounding strata,particularly those underlying the ore deposits.The mechanim of ore deposition is thought to be hydrothermal explosion and accompanying boiling and abrupt changes in pH and Eh.Located in northwest Hunan,the Shimen realgar deposit is the leading arsenic producer in the country,However,regardless of its long mining history,the genesis of this deposit has long been a puzzle.It was considered to be postmagmatic epithermal in the leading arsenic producer in the puzzle.It Was considered to be postmagmatic epithermal in origin,but this is trongly challenged by filling(metasomatism)in karst environment proposed later by Zhou Zhiquan(1986)also encounters a number of difficulties.For example,why can the pipi-shaped orebody vertically extend up to several hundreds meters without any compatible development in the lateral dimension? A hot spring genesis is suggested in the present paper based on geological observations and laboratory studies conducted by the authors in recent years.  相似文献   

15.
Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia, were studied. An integrated mineralogical analysis by using X-ray powder diffraction (XRD), Raman spectrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) reveals four kinds of As-bearing secondary minerals including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals. The precipitation of arsenates is due to interaction of As-bearing run-off waters and the underlying carbonate rocks, or the transformation of gypsum into arsenates or As-bearing gypsum through SO42-/HAsO42- substitution. Ca-arsenates are mainly weilite and pharmacolite with Ca/As atomic ratio of 1. Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) reveal that the valence of arsenic is mainly +3 and +5.  相似文献   

16.
雄黄矿物表面氧化过程的量子化学计算   总被引:1,自引:0,他引:1  
采用密度泛涵量子化学计算方法对雄黄矿物晶体{010}晶面进行了计算,分析了该晶面的表面化学反应活性,表明表面上不同位置As、S原子的化学活性相差不大;同时对雄黄矿物晶体{010}表面吸附H2O、O2分子时的模型进行了势能面扫描计算,发现H2O和O2分子在该表面吸附时将发生解离,同时雄黄中的As将被氧化而形成砷的氧化物。  相似文献   

17.
Arsenic sulfide (AsS (am), As2S3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH∼2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As2S3 (am), orpiment, AsS (am), and realgar, respectively.Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ∼1.14 to 13 times and that pH values decrease by ∼0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase.Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As2S3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH∼8 and temperature 25 to 40°C, and pyrite activation energies are ∼52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As2S3 (am). Low activation energies of As2S3 (am) indicate that diffusion may be rate controlling.Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号