首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines. To evaluate the quality of blasting, the size of rock distribution is used as a critical criterion in blasting operations. A high percentage of oversized rocks generated by blasting operations can lead to economic and environmental damage. Therefore, this study proposed four novel intelligent models to predict the size of rock distribution in mine blasting in order to optimize blasting parameters, as well as the efficiency of blasting operation in open mines. Accordingly, a nature-inspired algorithm (i.e., firefly algorithm – FFA) and different machine learning algorithms (i.e., gradient boosting machine (GBM), support vector machine (SVM), Gaussian process (GP), and artificial neural network (ANN)) were combined for this aim, abbreviated as FFA-GBM, FFA-SVM, FFA-GP, and FFA-ANN, respectively. Subsequently, predicted results from the abovementioned models were compared with each other using three statistical indicators (e.g., mean absolute error, root-mean-squared error, and correlation coefficient) and color intensity method. For developing and simulating the size of rock in blasting operations, 136 blasting events with their images were collected and analyzed by the Split-Desktop software. In which, 111 events were randomly selected for the development and optimization of the models. Subsequently, the remaining 25 blasting events were applied to confirm the accuracy of the proposed models. Herein, blast design parameters were regarded as input variables to predict the size of rock in blasting operations. Finally, the obtained results revealed that the FFA is a robust optimization algorithm for estimating rock fragmentation in bench blasting. Among the models developed in this study, FFA-GBM provided the highest accuracy in predicting the size of fragmented rocks. The other techniques (i.e., FFA-SVM, FFA-GP, and FFA-ANN) yielded lower computational stability and efficiency. Hence, the FFA-GBM model can be used as a powerful and precise soft computing tool that can be applied to practical engineering cases aiming to improve the quality of blasting and rock fragmentation.  相似文献   

2.
为了解决传统钻爆法在隧道工程中振动大的问题,引入一种新型破岩技术--高压气体膨胀破岩技术。通过在某隧道掌子面采用该技术进行现场试验,获得该技术试验时的振动速度值和试验后的破岩效果,将获得的结果与传统钻爆法得到的相应结果进行对比分析,结果表明,高压气体膨胀破岩技术在施工时产生的振动比钻爆法小,证明了将该技术应用在隧道工程中是可行的,解决了该隧道采用钻爆法施工振动风险大的问题,为类似工程破岩提供了一种新途径。  相似文献   

3.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   

4.
Summary The purpose of this study is to statistically correlate the fragmentation gradient () and average fragment size () with the blasting test parameters for rock masses having different characteristics. Blasting tests were conducted in limestone exposed during the highway construction between Tarsus and Pozanti (Turkey). Three test sites were classified as poor rock, good rock, and very good rock according to their RMR ratings. The selected blasting test parameters that affect the degree of fragmentation were burden, bench height and ANFO charge. After each blast, the muckpiles were screened and fragment size distribution graphs were plotted. Yates' method was applied for experimental design and analysis of variance. The single and combined effects of blasting test parameters were analyzed through the Yates' tables and significant and non-significant treatment combinations were determined for different rock masses. Some conclusions drawn from this research are: 1. The increase of RMR ratings promotes fragmentation, hence, increases blasting efficiency. 2. In rock masses of low RMR ratings, the volume of broken material is large, but fragmentation into small sizes is low. The opposite is true for rock masses of high RMR ratings. 3. The length of charge column is the significant factor affecting the average fragment size regardless the type of rock mass and is more significant in very good quality rock mass.  相似文献   

5.
Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.  相似文献   

6.
爆破地震波作用下既有圆形隧道衬砌动应力集中系数分析   总被引:1,自引:0,他引:1  
李兴华  龙源  纪冲  周翔  何洋扬  路亮 《岩土力学》2013,34(8):2218-2224
将爆破地震波进行合理近似简化,采用波函数展开法,推导出无限岩石介质中爆破地震波作用下隧道围岩和衬砌动应力集中系数的表达式。结合具体算例,分析隧道不同位置上爆破地震波主频、隧道几何参数和隧道围岩和衬砌物理力学指标对动应力集中系数的影响。分析结果表明,爆破地震波主振频率对隧道围岩和衬砌中的动应力集中系数(DSCF)影响较大,隧道不同位置和不同方向应力的动应力集中系数随主振频率的变化趋势不同,低主振频率引起的动应力集中系数较大,不利于隧道的抗爆破振动;隧道几何参数对隧道围岩和衬砌内侧切向应力动应力集中系数影响趋势不同;隧道衬砌弹性模量对隧道结构动应力集中系数影响较大,泊松比次之;泊松比较大的隧道围岩具有一定的抗爆破振动作用,但效果有限。  相似文献   

7.
SummaryThe Application of Size Distribution Equations to Rock Breakage by Explosives Size distribution equations can be used to describe the degree of fragmentation produced by explosive rock breakage. This paper describes the results of small scale blasting experiments and the derivation of equations to relate size distributions to blasting design parameters. The application and relevance of these techniques to large scale blasting operations is also discussed.With 7 Figures  相似文献   

8.
Blasting is the primary comminution process in most mining operations. This process involves the highly complex and dynamic interaction between two main components. The first is the detonating explosive and the second is the rock mass into which the explosive is loaded. The mechanical properties of the rock material (such as dynamic strength, tensile strength, dynamic modulus and fracture toughness) are important considerations in understanding the blasting process. However, it is the characteristics of the geological defects (joints, foliation planes, bedding planes) within the rock mass that ultimately determine how effectively a blast performs in terms of fragmentation, all else being equal. The defect characteristics include, but are not limited to, their orientation, spacing, and mechanical properties. During the blasting process, some of the geotechnical characteristics of the rock mass are substantially changed. From the blasting outcome point of view, the most notable and important is the change in fragment size distribution that the rock mass undergoes. The pre-blast in situ defect-bounded block size distribution is transformed into the post-blast muckpile fragment size distribution. Consequently, it is fundamental to our understanding of and ability to predict the blasting process that both the blastability of a rock mass and its transformation into the fragment size distribution can be appropriately quantified.  相似文献   

9.
The theoretical explosive energy used in blasting is a common issue in many recent research works (Spathis 1999; Sanchidrian 2003). It is currently admitted that the theoretical available energy of the explosives is split into several parts during a blast: seismic, kinetic, backbreaks, heave, heat and fragmentation energies. Concerning this last one, the energy devoted to the breakage and to the creation of blocks within the muckpile can be separated from the microcracking energy which is devoted to developing new and/or extending existing micro cracks within the blocks (Hamdi et al. 2001; López et al. 2002). In order to investigate these two types of energy, a first and important task is to precisely study the main parameters characterising the two constitutive elements of the rock mass (rock matrix and discontinuity system). This should provide useful guidelines for the choice of the blasting parameters (type of explosive, blasting pattern, etc.), in order to finally control the comminution process. Within the frame of the EU LESS FINES research project, devoted to the control of fines production, the methodology was developed in order to: (1) characterize the in situ rock mass, by evaluating the density, anisotropy, interconnectivity and fractal dimension of the discontinuity system and (2) evaluate fragmentation (both micro and macro) energy spent during the blasting operation. The methodology was applied to three production blasts performed in the Klinthagen quarry (Sweden) allowing to estimate the part of the fragmentation energy devoted to the formation of muck pile blocks on one side and to the muckpile blocks microcracking on the other side.  相似文献   

10.
爆破振动对任意形状地下洞室的影响研究   总被引:1,自引:0,他引:1  
易长平  卢文波  张建华  张爱平 《岩土力学》2007,28(11):2451-2455
根据应力波理论和复变函数方法,建立了求解爆破地震波作用下任意形状洞室动态响应的解析方法。即通过保角变换的方法,将物理平面上任意形状的洞室映射到像平面的单位圆,将问题转化为应力波与单位圆形洞室的相互作用问题。以爆破地震波与一半圆直墙拱形洞室相互作用为例,求解了不同频率的爆破地震波以不同方向作用于地下洞室时围岩的应力和振速分布,结合围岩的抗拉强度,求解了各种工况下围岩的临界破坏振速。  相似文献   

11.
Enhanced demand for coal and minerals in the country has forced mine operators for mass production through large opencast mines. Heavy blasting and a large amount of explosive use have led to increased environmental problems, which may have potential harm and causes a disturbance. Ground vibrations generated due to blasting operations in mines and quarries are a very important environmental aspect. It is clear that a small amount of total explosive energy is being utilized in blasting for breakage of rock mass, while the rest is being wasted. The amount of energy which is wasted causes various environmental issues such as ground vibrations, air overpressure, and fly rock. Ground vibrations caused by blasting cannot be eliminated entirely, yet they can be minimized as far as possible through a suitable blasting methodology. A considerable amount of work has been done to identify ground vibrations and assess the blast performance regarding the intensity of ground vibrations, i.e., peak particle velocity and frequency spectrum. However, not much research has done into reducing the seismic energy wasted during blasting leading to ground vibrations. In this paper, the blast-induced ground vibrations in three orthogonal directions, i.e., transverse, vertical, and longitudinal, were recorded at different distances using seismographs. An attempt has been made for the estimation of the percentage of explosive energy dissipated in the form of seismic energy with electronic and non-electric (NONEL) initiation system. signal processing techniques with the help of DADiSP software is used to study the same.  相似文献   

12.
不耦合装药爆破对硬岩应力场影响的数值分析   总被引:7,自引:1,他引:6  
姜鹏飞  唐德高  龙源 《岩土力学》2009,30(1):275-279
爆破地震勘探石油是一种重要的方法,但爆破地震效应与爆破参数、地质条件等密切相关。采用动力有限元软件ANSYS/LS-DYNA,对柱状炸药与药孔壁之间为空气或其他介质以及空隙间距变化时碳酸盐岩岩石中爆炸应力波的传播规律和爆炸地震波能量的衰减特性进行了数值模拟研究,得到了不耦合装药爆炸时岩石应力、振动速度的衰减规律以及与不耦合系数、间隙介质的关系,分析了不耦合效应对爆炸地震波能量的影响。研究表明,不耦合或耦合不好时会使岩体中爆炸应力波的强度大大降低;耦合状态对岩体应力及速度的衰减系数和衰减指数影响较大;在空隙中注水或灌满泥浆会改善它们的耦合关系,增大下传的爆破能量。所得成果可为我国西南地区优选适合碳酸盐地层地震勘探的激发因素提供技术途径和方法。  相似文献   

13.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

14.
The paper proposes a standardized image-processing procedure with the use of sieve analysis results for calibration which is utilized to measure the size distribution of fragmentation at Sungun mine. Through this procedure, a number of 19 bench blasting in various levels have been initially selected as the target of the study for each, multiple photos were taken immediately after blast from suitable perspectives and locations of the muckpiles surfaces. The number of image sampling was chosen adequately high to achieve further reliability of the whole photography procedure. Then fragments of each muckpile were separately mixed by a loader, where another image sampling from these new muckpiles, bucket of loaders, and haulage trucks was performed. For the purpose of sieve analysis, seven sieves with the mesh sizes between 1.27 cm (0.5 in) and 25.4 cm (10 in) were designed, manufactured, and then installed at Sungun semi-industrial laboratory. Additionally, three mass samples of the mixed fragments were randomly chosen among the 19 muckpiles for sieving. During image analysis stage, “sieve shift” and “mass power” factors, required to obtain standardized size distribution, were precisely assigned when the results obtained by the image analysis software was in accordance with the sieving results. In order to validate the reliability of the image processing, a comparative analysis of the achieved results was made with the results of the original Kuz–Ram model [Cunningham (1983) The Kuz–Ram model for prediction of fragmentation from blasting. In: Proceedings of the first international symposium on rock fragmentation by blasting, Lulea, Sweden, pp 439–454]. Finally, the image-processing procedure was found to be more efficient, with results close-matched to the real results of the sieve analysis.  相似文献   

15.
Summary. The operation of a digital image analysis system in a limestone quarry is described. The calibration of the system, required in order to obtain moderately reliable fragmentation values, is done from muckpile sieving data by tuning the image analysis software settings so that the fragmentation curve obtained matches as close as possible the sieving. The sieving data have also been used to extend the fragment size distribution curves measured to sizes below the system’s optical resolution and to process the results in terms of fragmented rock, discounting the material coming from a loose overburden (natural fines) that is cast together with the fragmented rock. Automatic and manual operation modes of the image analysis are compared. The total fragmentation of a blast is obtained from the analysis of twenty photographs; a criterion for the elimination of outlier photographs has been adopted using a robust statistic. The limitations of the measurement system due to sampling, image processing and fines corrections are discussed and the errors estimated whenever possible. An analysis of consistency of the results based on the known amount of natural fines is made. Blasts with large differences in the amount of fines require a differentiated treatment, as the fine sizes tend to be the more underestimated in the image analysis as they become more abundant; this has been accomplished by means of a variable fines adjustment factor. Despite of the unavoidable errors and the large dispersion always associated with large-scale rock blasting data, the system is sensitive to relative changes in fragmentation.  相似文献   

16.
The influence of air deck blasting on blast performance and blast economics and its feasibility has been studied in the production blasting of soft and medium strength sandstone overburden rocks in an open pit coal mine in India. The air deck blasting technique was very effective in soft and medium strength rocks. Its main effects resulted in reducing fines, in producing more uniform fragmentation and in improving blast economics. The fines were reduced by 60–70% in homogeneous sandstones. Oversize boulders were reduced by 80% and shovel loading efficiency was improved by 20–40% in blocky sandstones. The explosive cost was reduced by 10–35% dependent on the type of rock mass. Throw, backbreak and ground vibration were reduced by 10–35%, 50–80% and 30–94% respectively. For a particular rock mass and blast design environment, air deck length (ADL) significantly influenced the fragmentation. ADL as represented by air deck factor (ADF) in the range of 0.10–0.35 times the original charge length (OCL) produced optimum results. ADF beyond 0.35 resulted in poor fragmentation and in inadequate burden movement.  相似文献   

17.
In the last decade, fragmentation prediction has been attempted by many researchers in the field of blasting. Kuznetsov developed an equation for the estimation of average fragment size, x 50 , based on explosive energy and powder factors. Cunningham introduced a uniformity index n as a function of drilling accuracy, blast geometry and a rock factor A associated with a “blastability index”, which can be calculated from the jointing, density and hardness of the blasted rock mass. Knowing the mean size and the uniformity index, a Rosin-Rammler distribution equation can then be derived for calculating the fragment size distribution in a blasted muckpile. Analysis of existing data has revealed serious discrepancies between actual and calculated uniformity indices. The current integrated approach combines the Kuznetsov or similar equation and a comminution concept like the Bond Index equation to enable the estimation of both the 50% and 80% passing sizes ( k 50 and k 80 ). By substituting these two passing sizes into the Rosin-Rammler equation, the characteristic size x c and the uniformity index n can be obtained to allow the calculation of various fragment sizes in a given blast. The effectiveness of this new fragmentation prediction approach has been tested using sieved data from small-scale bench blasts, available in the literature. This paper will cover all tested results and a discussion on the discrepancy between measurement and prediction due to possible energy loss during blasting.  相似文献   

18.
It is a well known fact that rock mass properties influence the process of fragmentation considerably. Model blasts and field investigations were carried out to find the effects of rock mass quality and joint orientation on tunnel blasting. Propagation of shock waves are partially restricted by joint planes. It was observed that the blast results (i.e., average fragment size and depth and cross-sectional area of the broken zone) were considerably influenced by joint orientation. Accordingly, it has been concluded that loading equipment with a larger capacity and deeper blast holes are required in formations with joint planes perpendicular to the tunnel axis. The number of blast holes, however, should be greater when joints are parallel to the tunnel axis. Furthermore, the powder factor (kg/m3) has been found to be directly related to rock mass quality (Q). Optimisation of pull, powder factor and overbreak is required in the case of weak formations with joints perpendicular to the tunnel axis. The use of contour blasting technique seems to be essential in poor and fair rock masses to minimise the overbreak, reduce the support cost and improve the stability of the opening.  相似文献   

19.
Air gap in an explosive column has long been applied in open-pit blasting as a way of reducing explosive charge, vibration, fly rock and improve fragment size. In conventional blasting a greater amount of explosive energy is lost in the generation of oversize fragments. Oversize fragments reduces loading and hauling efficiencies of equipment which requires secondary blasting. Recurring oscillation of shock waves in the air gap increases the time over which it acts on the adjacent rock mass by factor of 2–5. Top air deck blasting technique trial conducted with an application of gas bags at Chimiwungo pit resulted in an improved fragmentation of about 94 % less than 950 mm. Results obtained from the analysis of muckpile images using split-desktop exhibited that the mean fragment size was 264.81 mm and F20, F80 and top-size were 41.99, 683.18 and 1454.69 mm respectively. Optimum crusher feed size was as large as 1200 mm and crushed down to the 40 mm and only a small percent of the material was above 1200 mm. Gas bag application resulted in a significant reduction in explosives load in production holes without loss in fragmentation or movement of the collar zone. This reduced total cost of charging as compared to conventional blasts with a variance of $20, powder factor was dropped to an average of 0.86 kg/bcm. The technique reduced the cost of bulk blend explosive by 15 %, reduced overall cost of charging per hole by 12 %, enhanced premature ejections. The overall blast results were satisfactory, 443,624 tonnes of blasted material from the block which represented 90 % of the total muckpile material was within 900 mm size. The overall muckpile blasted was well fragmented.  相似文献   

20.
Airdecking is used in mining for two quite different applications. One is to enhance the fragmentation by amplifying the induced fracturing and the second is for pre-split blasting in which the borehole fracturing is reduced. This paper deals with the first of these effects. A forth coming paper will describe pre-splitting by airdecking. The use of air decks to enhance rock fragmentation and so to reduce explosive costs has been the practice for quite long time. Although a number of studies has been conducted to verify the advantages of blasting with air decks and to investigate the mechanisms involved, the proposed mechanisms still cannot explain clearly the phenomena observed in practice and the design approach adopted for this kind of blasting is still primary based on rules-of-thumb. In this paper, the theory of shock tubes is adopted to (a) investigate the processes of the expanding detonation products, (b) study the interactions between the explosion products and the stemming or bottom of blasthole, and (c) to decide the distribution of the changing pressure of explosion products along blasthole. Numerical simulation and theoretical analyses are then performed to study the physical process of blasting with air decks. Finally, a reasonable value for the airdecking ratio is decided theoretically. It is shown that the pressure-unloading process caused by the propagation of the rarefaction wave and the reflected rarefaction waves in the detonation products plays an important role in the enhanced fragmentation of rock when blasting with air decks. The unloading process can induce tensile stresses of rather high magnitude in the rock mass surrounding blasthole. This favors fracturing of the rock. The reflected shock wave with a magnitude of gas pressure higher than that of the average detonation pressure in a fully charged blasthole acts as the main energy source to break the rock in the air deck and stemming portions. The second and succeeding strain waves induced by the unloading or reloading of the pressurewithin the blasthole also contribute to form the initial fracture network in the rock around the blasthole. It is also revealed that there exists a reasonable range of values for the airdecking ratio. For ANFO, this value varies from 0.13-0.40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号