首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region of Amarante (Northern Portugal) is composed of Hercynian tardi-tectonics granites and Paleozoic metasediments. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals such as apatite, zircon, monazite, uraninite, thorite and thorianite. The geological, geochemical and radiological data obtained suggest that the radon concentrations in dwellings of the studied area are mainly related with the uranium content of the rocks. Indeed, the highest contents were observed in granite AT2 of Padronelo (18.2 ppm) and the granite AT1 of Telões (10.3 ppm), with metasediments showing much lower uranium contents of 1.6 ppm; radon concentrations were evaluated in dwellings, using CR-39 passive detectors, and the results obtained in winter conditions suggest that the most productive geological units are the granites AT2 and AT1, with geometric means of 430 and 220 Bq/m3, respectively, while the metasediments show the lowest value of 85 Bq/m3. Some moderate radiometric anomalies, where uranium contents can double typical background values, were found in relation with specific fault systems of the region affecting granitic rocks, thus increasing radon risk; this is an indication of uranium mobility, likely resulting from the leaching of primary mineral supports as uraninite. Groundwater radionuclide contents show a wide range of results, with the highest activities related with granitic lithologies: 2,295 Bq/l for radon, 0.83 Bq/l for gross α and 0.71 Bq/l for gross β, presenting metasediments much lower values, in good agreement with other results obtained. Absorbed dose measured with gamma spectrometers in direct contact with the rocks is directly related with the uranium contents of the rocks, and thus works as a fast proxy for radon risk. It is concluded that radon risk is moderate to high in the granitic areas of the Amarante region and low in the metasediments of the same region.  相似文献   

2.
Radon measurements in soil and groundwater (springs, thermal springs and handpumps) were made in a variety of lithological units including major thrusts between Mandi and Manali in Himachal Himalaya. Analysis of radon data in light of lithological controls and influence of deep-seated thrusts has been made to elucidate the causative factors for anomalous emanation of radon. The lithological types include banded gneisses, schists, quartzite, granite, phyllites, volcanics and mylonites. The low-grade metasedimentries of Shali and Dharamsala generally show low and narrow range of radon concentration in water (5.6–13.4 Bq/l) as well as in soil (1.8–3.2 kBq/m3) except for the samples related to thrusts. On the other hand, sheared and deformed rocks of Chail and Jutogh show moderate radon content (average 5.03 kBq/m3, range 2.9–11.1 kBq/m3) in soil. However, the groundwater radon concentration shows wide variation in different types of sources (2.1–80.8 Bq/l). The quartzite and volcanic rocks of Rampur formation in this area present as a window separated by Chail thrust. Radon emanations on these rock types are relatively high (6.3–68.1 Bq/l in water and 5.5–15.9 kBq/m3 in soil) and are exceptionally high in samples that are related to uranium mineralization, deep-seated thrusts and hot springs (13.5–653.5 Bq/l). It is generally observed that anomalous high radon content is associated with mineralization, deeper source and tectonic discontinuities. Whereas it is obvious that subsurface radioactive mineralization would facilitate enhanced radon production, however, thrust plains provide easy pathways for escape of gases from the deeper sources. Shallow and deep sources of the groundwater have contrasting radon content particularly in the deformed and metamorphosed rocks of Jutogh and Chail. Shallow groundwater sources, mainly handpumps, have lower radon concentration due to limited superficial water circulation, whereas deeper sources, mainly perennial springs, show higher radon content because of larger opportunity for water–rock interaction.  相似文献   

3.
Artesian basins contain the largest mineral water resources of the world. There are several types of mineral therapeutic water: sulfate, chloride, radon-rich, iron-rich waters, etc. Artesian basins occupy very large areas in Russia. However, genesis of water and brines is still not very clear. This is one of the most important hydrogeological problems that is being attempted to solve for many years. Most of the Russian hydrogeologists traditionally consider that these waters are of sedimentary origin. However, higher concentrations of bromine, iodine, iron, radon and other balneologically active components can be of different origin, for example, of infiltration or juvenile water. As an example, two areas will be considered – West-Siberian basin and East-European artesian area.West-Siberian artesian basin has very distinct latitudinal and vertical zonation. Latitudinal zonation is caused by climate changes from north to south. As for the vertical zonation, mineralization and chemical composition change in the vertical cross-section and from the periphery to the center within the same aquifer. The main mineral water resources of West-Siberian artesian basin are concentrated in Mesozoic rocks. Brackish waters and low-saturated brines without specific components are used for medical purposes. The most well-known spa is Karachi, which exploits chloride-hydrocarbonate brackish water. Sodium chloride bromine and iodine-bromine waters are used at other health resorts. It is possible to organize extraction of iodine from brines of Tcherkashinsko-Tobolskoe occurrence in Tumen region.East-European artesian area occupies most of the Russian Platform. The most widespread types of mineral water within the Russian Platform are sodium-chloride and magnesium-sulfate waters and brines. Such well-known spas, like Moscow mineral waters, Krainka, Staraya Russa and many others, belong to this type. Resources of these waters are definitely connected with sedimentogenic processes. The upper hydrodynamic zone contains iron-rich, hydrogen sulfide, and sometimes radon-rich water. Their formation is caused by the interaction between waters of infiltration and sedimentary genesis, or between infiltration waters and host rocks. One of the examples is Polustrovo iron-rich water. There are industrially valuable waters containing bromine and iodine.The resources of therapeutic water of sedimentary basins allow to increase balneological potential of spas in Russia.  相似文献   

4.
对金山金矿田的金山金矿、花桥金矿区露天水源天然铀、氡,居民区和井下作业人员γ外照射有效剂量等进行调查的结果表明:金山、西蒋矿区露天水源天然铀、氡浓度均小于限值0.05 m g/L和37.00 Bq/L,空气氡浓度为0.008~0.013 Bq/L.居民和井下作业人员γ外照射年有效剂量均小于1 m s和5 m s.矿区放射性均在国家规定的环境评价指标限制之内,对矿山的人身和环境无影响.  相似文献   

5.
This paper presents the results of radon concentration measurements in the drinking water from the municipal water supply system and private wells of Xian, Xianyang and Baoji city of Shaanxi province of China. The measurements were carried out on 38 samples. Radon levels in drinking water in Xian, Xianyang and Baoji were found to be 5.78, 13.04 and 15.01 k Bq m–3, respectively. The AM radon concentration of private well water from Xianyang and Baoji is 28.84 k Bq m–3 and 38.85 k Bq m–3, respectively, which is 2.56 times and 3.14 times as high as that of tap water radon, respectively. The radiation risk of radon in water would be due to degassing and not due to drinking water. The domestic use of showers, humidifiers, and cooking, washing up, laundering, etc. may lead to an additional increase of the radon concentration in the indoor air. The observed radon concentration in drinking water from three main cities of Shaanxi Province can contribute to a 4.86 to 32.63% increase in indoor radon concentration and can cause 0.068±0.016 mSv y–1 to 0.177±0.045 mSv y–1 extra annual effective dose to males, 0.060±0.014 mSv y–1 to 0.155±0.039 mSv y–1 to females. The mean annual effective dose equivalents to males and females of Xianyang and Baoji from well water account for 25.94 to 39.75% of environmental radon and radon daughters annual effective dose equivalents. The radon concentrations in the well water from Xianyang and Baoji will bring a definite additional risk to the population.  相似文献   

6.
Twenty-eight samples of groundwater from bedrock boreholes in three distinct Norwegian geological provinces have been taken and analyzed for content of Rn, U, and Th, together with a wide variety of minor and major species. Median values of 290 Bq/1, 7.6 g/1, and 0.02 g/1 were obtained for Rn, U, and Th respectively, while maximum values were 8500 Bq/1, 170 g/1, and 2.2 g/1. Commonly suggested drinking water limits range from 8 to 1000 Bq/1 for radon and 14 to 160 g/1 for uranium. Radioelement content was closely related to lithology, the lowest concentrations being derived from the largely Caledonian rocks of the Trøndelag area, and the highest from the Precambrian Iddefjord Granite of southeast Norway (11 boreholes) where median values of 2500 Bq/1, 15 g/1 and 0.38 g/1, respectively, were obtained. The Iddefjord Granite is not believed to be unique in Norway in yielding high dissolved radionuclide contents in groundwaters, and several other granitic aquifers warrant further investigation in this respect.  相似文献   

7.
Radon concentration was evaluated in dwellings of the urban area of Vila Real (Northern Portugal). The area is mainly composed of Hercynian granites and Cambrian metasediments, and CR-39 passive detectors (n = 112) were used for the purpose. The results obtained in winter conditions suggest that the most productive geological unit is the Hercynian granite G1 (geometric mean of 364 Bq/m3), while Cambrian metasediments of the Douro Group show the lowest average indoor radon concentration (236 Bq/m3). The geological, geochemical and radiological data obtained suggest that the most effective control on the radon concentrations of the area is related with the uranium content of the rocks; indeed, the highest contents were observed in granite G1 (21 ppm) and the lowest in the metasediments (3 ppm). This is also confirmed by the results obtained for groundwater, where granites present the highest concentrations of dissolved radon (up to 938 Bq/l), uranium (5–18 ppb) and gross α activities (0.47–0.92 Bq/l). No important radiometric anomalies were found in relation with geological structures such as faults, veins and contacts, but a moderate increase of the uranium content can occur locally in such structures. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals (apatite, zircon, monazite, xenotime), which reduces radon emanation. Notwithstanding, due to the high U contents granites show a significant potential to induce indoor radon concentrations in dwellings in excess of the recommended value of 400 Bq/m3. Overall, we can conclude that the region of Vila Real presents a moderate to high radon risk in dwellings and groundwater.  相似文献   

8.
对长约70 km引水工程洞线上进行的地面伽马能谱测量、陆地伽马剂量率测量、土壤氡浓度测量、岩石表面氡析出率测量以及钻孔岩芯样品的放射性元素U、Ra、Th、K含量分析的综合放射性地质调查,并对获得的测量数据进行分析研究。结果表明,测区引水沿线地质体放射性核素当量含量平均值为:U 1.56×10-6,Th 14.12×10-6,K 2.16×10-2;钻孔岩芯放射性元素分析含量平均值为:U 32.34 Bq/kg,Ra 35.68 Bq/kg,Th 35.29 Bq/kg,K 865.65 Bq/kg。陆地伽马剂量率为90.42 nGy/h;土壤氡浓度平均值为4 272.1 Bq/m3;岩石表面析出率平均值为4.01×10-2 Bq/m2·s。根据测量结果,利用内照射和外照射辐射剂量计算了对施工人员造成的辐照剂量为0.759 mSv,低于国家对公众的剂量限值1 mSv/a,表明引水工程输水隧洞的施工在安全辐射范围内。  相似文献   

9.
An attempt was made in the present study to delineate how the radon concentrations vary with respect to different geological formations and to evaluate annual effective dose exposure due to ingestion of radon. A total of 60 groundwater samples were collected from layered sequential aquifers in Chitradurga district having major rock types such as Bababudan Group, Charnockite, Chitradurga Group, Closepet granite, migmatites and granodiorite — tonalitic gneisses and Sargur Schist complex during pre-monsoon and post-season of the year 2011. Radon measurement was made using Durridge RAD-7 radon-in-air monitor, connected to RAD H2O accessory with closed loop aeration concept. In the present study, the radon activity ranged from 0 to 186.6 Bq/L and 0 to 150.6 Bq/L during pre- and post-monsoon seasons of the year 2011, with 56.67 % (17 samples) of samples during both the seasons exceeding the EPA’s MCL value of 11.1 Bq/L. The annual mean radon activity in the groundwater was higher in the area having Chitradurga rock group formations (78.1 Bq/L) followed by Sargur-Satyamangalam schist complex group (56.8 bq/L), migmatites and granodiorite — tonalitic Gneisses group (56.3 Bq/L), Closepet granite (42.7 Bq/L), Charnonkite (29.1 Bq/L) and Bababudan Group (22.2 Bq/L). It is inferred that radon concentration found to depend on the tectonic structure, geology of the area and on the presence of uranium minerals in these rocks. The annual effective dose resulting from radon in groundwater in the Chitradurga district were significantly lower than UNSCEAR and WHO recommended limit of 1 mSv/y.  相似文献   

10.
The ground waters circulating in the Apulian mesozoic carbonate aquifer, of coastal type, show high concentrations of 222Rn everywhere. Considering their variation during the different phases of a hydrological year, such high concentration values can reach activity of 20 Bq/L, in the more internal zones of the aquifer. Moreover, it is often observed that, in correspondence of wells and springs nearest the coast, the concentrations of radioactive gas reach values greater than 400 Bq/L and vary considerably during the course of a day and with withdrawals. The research carried out over the last few years, has confirmed that 226Ra and 222Rn concentrations in the karst groundwater of Apulia, are mainly related to the occurrence of Terra Rossa inside the aquifer and the capacity of these paleosols to fix the salts of 226Ra coming from the dissolution of the calcareous and calcareous-dolomitic rocks. This paper shows the results of the analysis performed to define 222Rn increase in the brackish waters that come in contact with carbonate rocks and terra rossa. It also indicates the results of surveys performed in a coastal zone with well-known hydrogeological features. The controls performed during one hydrological year, have confirmed the relationships between the salt content of the ground waters and the enrichment of 222Rn and have highlighted that the manner of increase of this radioisotope is related to cases of ionic exchange and adsorption regulated by the dynamics of marine intrusion.  相似文献   

11.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

12.
Radon in Himalayan springs: a geohydrological control   总被引:3,自引:0,他引:3  
 This paper presents the results of radon measurements in springs of the Himalayan region by using radon emanometry technique. The radon was measured in different springs, draining from different geohydrological setups, and from stream water in order to find the geohydrological control over radon concentration in groundwater emanating in the form of spring. The radon values were found to vary from 0.4 Bq/l to 887 Bq/l, being observed lowest for a turbulent stream and highest for the spring. The radon values were recorded highest in the springs draining through gneiss, granite, mylonite, etc. Radon concentrations have been related with four spring types viz. fracture-joint related spring, fault-lineament related spring, fluvial related spring and colluvial related spring, showing geohydrological characteristics of the rocks through which they are emanating. The high radon concentration in fracture-joint and fault-lineament spring is related to increased ratio of rock surface area to water volume and uranium mineralisation in the shear zones present in the close vicinity of fault and thrust. The low concentration of radon in fluvial and colluvial springs is possibly because of high transmissivity and turbulent flow within such deposits leading to natural de-emanation of gases. Received: 6 January 1998 · Accepted 11 May 1999  相似文献   

13.
 Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley, Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes that occur in the area. The impact of these activities on radon concentration in groundwater are discussed. Received: 17 September 1999 · Accepted: 11 April 2000  相似文献   

14.
Most sedimentary basins contain saline pore water. Saline formation waters can form during burial diagenesis as the result of normal processes of water/rock interaction involving incongruent halite dissolution, bittern salt destruction, and albitization of detrital plagioclase. The kinds of Na-Ca-Cl saline formation waters typical of sedimentary basins can also result from modification of surficial brines formed by the precipitation of NaCl from evaporated seawater. As the porosity of rocks is reduced during burial, discharge of saline formation waters contributes to crustal chloride cycling, and helps explain riverine chloride loads. During burial, the dissolution of metastable detrital minerals derived from crustal rocks in corrosive, saline water transfers incompatible elements such as Li and B from the igneous crust to the sedimentary crust. Similarly, albitization transfers Ca from the crustal silicate (igneous) mineral reservoir to the crustal carbonate and aqueous (sedimentary) reservoirs. Metamorphism and then melting of albite-enriched rocks accounts for the elevated sodium contents of igneous rocks relative to sedimentary rocks. In this way average sediments have become enriched through time in Ca, Cl, Br, S, Li, and B, and depleted in Na relative to average igneous crust.  相似文献   

15.
The rocks of the Swiss Central Alps consist of pre-Mesozoic and Mesozoic rocks which were metamorphosed during the Alpine orogeny. Eightysix samples from this area have been analyzed for their isotopic composition (310 mineral phases for their 18O values and 99 mineral phases for their D values).The mineral phases of pre-Mesozoic and Mesozoic rocks differ significantly in their stable isotope composition. The minerals in pre-Mesozoic rocks display a rather uniform oxygen and hydrogen isotope composition indicative of large-scale homogenization with magmatic fluids. The mineral phases of Mesozoic rocks, on the other hand, show a large variation in their isotopic composition, their 18O values are heavier, and their D values are isotopically lighter than the pre-Mesozoic phases. These data indicate the lack of a large-scale water supply to the gneissic cores of the Penninic nappes during Alpine metamorphism.Equilibrium conditions, as indicated by concordant oxygen isotope temperatures, are attained in several samples; disequilibrium, however, is more frequently observed, mainly in the central part of the Lepontin area. The pre-Mesozoic rocks recrystallized during Alpine metamorphism. This process was accompanied by partial reequilibration of the oxygen isotopes, and took place in a closed system. In the pre-Mesozoic rocks, the oxygen isotope fractionations, therefore, reflect the temperatures at the time of this recrystallization which, in many cases, is not the maximum temperature of Alpine metamorphism. There is strong evidence that oxygen isotope ratios are frozen during the progressive phase of a metamorphic event.Oxygen isotope fractionations indicate temperatures of Alpine metamorphism ranging from 500 ° C near Andermatt to 700 ° C near the Bergell granite.  相似文献   

16.
对安徽东至县铁炉地区开展了放射性污染调查工作,并提出了防治方案和治理措施。其方法是采用6台FD-3013γ辐射仪、1台FD-3022N道γ谱仪和1台FD-3017氡射气仪对该地区进行大比例尺地面γ辐射剂量率、地面γ能谱、水中氡浓度等测量。获得了该地区γ辐射剂量率为0.11~4.38μGy/h;铀质量活度为123-1 230Bq/kg,钍质量活度为21-411 Bq/kg,钾质量活度为264-528Bq/kg;水中铀活度浓度为4-12 300 Bq/L,水中氡活度浓度为2-155Bq/L;剥露的岩矿、矿渣中铀质量活度为1230-151 290 Bq/kg,钍质量活度为25-411 Bq/kg。该地区地面γ辐射剂量率、地层中铀、钍质量活度均高于安徽省平均值,而剥露的岩矿、矿渣中铀质量活度远大于地层中的铀质量活度,是该地区环境中最大的潜在污染源之一,并为此提出了4项治理措施。  相似文献   

17.
Stable (18O, 2 H) and radiogenic (3H, 14C) isotopes of water have been used to constrain the source, origin, age, migration pathway and mixing processes in the Sbeïtla (Tunisia) system. The system is composed of an upper unconfined Middle Miocene aquifer with a variable thickness from 10–300 m, an intermediate confined/unconfined Lower Miocene aquifer about 100 m thick and a deeper confined Lower Cretaceous aquifer about 150 m thick separated by a thin clay layer. A total of 53 groundwater samples from the three aquifers and spring samples were collected during February and March 2000 and isotopically analysed using conventional methods. The stable isotopes composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the superficial aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater. The radiogenic (3H, 14C) isotopes data confirm that the recent water, with a tritium content between 6.5 and 19 TU, represents post-nuclear recharge and the ancient groundwater with low carbon-14 contents between 7 and 26 pmC infiltrated between 8,000 to 20,000 years ago. When used in conjunction with the stable isotopes data, the mixing process can be clearly identified, especially in the Sbeïtla sill area. Groundwater of the upper aquifer exhibits isotopic signatures of both the old and recent waters. By using isotopic mass balance, the computed contribution of the deep groundwater in recharging the upper aquifer is up to 94%.  相似文献   

18.
18O/16O and D/H ratios have been measured in rocks and mineral separates from the basal complexes of Fuerteventura, Gomera and La Palma. These complexes comprise alkali plutonic rocks ranging from olivine gabbros to syenites and dikes of various mineralogy cutting them, all metamorphosed under greenschist conditions. K-Ar determinations gave ages from 48 to 17 My. The 18O's and D's of these rocks range from –1,4 to +11 and –113 to –45 respectively, with a majority of rocks depleted in heavy isotopes relative to normal, deep seated values. These values do not correspond to those found in ophiolitic sequences, which, for a comparable temperature range, give minimum 18O's>3. These values are explained in terms of water-rock interactions involving limited amounts of meteoric waters from high elevations. This implies the existence of a very important volcanic edifice over Fuerteventura in the Miocene Oligocene period with elevations between 2,500 and a maximum of more than 4,000 m.  相似文献   

19.
 Radon is a significant component of the groundwaters that discharge in the springs of Szczawno Zdrój and are recognized as medicinal. However, among the five exploited springs adjoining each other, it is only in Marta Spring that radon occurs in large concentrations (up to 325.6 Bq/dm3). Therefore, the authors have made an attempt to describe and clarify this fact. They found out from their own research and archival data that 222Rn dissolves in the waters of Marta Spring after acidulous waters of deep circulation have mixed with poorly mineralized shallow waters in their outflow zone. The genesis of the gas is determined by the content of its parent nuclide, 226Ra, in the sandstones in the vicinity of the intake. The volume of the rocks providing radon to the waters of this intake has been estimated at several hundred cubic metres. No seasonal fluctuations in radon concentration have been observed and 222Rn concentration changes do not seem to be influenced by changes in the concentration of other chemical components of the waters or by the discharge of the intake. The process of dissolving 222Rn in the medicinal groundwaters of Marta Spring is the last, the shortest, and the most local of the processes that form the chemical composition and the physical properties of these waters. Received: 7 January 2000 · Accepted: 12 August 2000  相似文献   

20.
周云龙  岑况  施泽明 《现代地质》2013,27(4):993-998
采用IED-3000R轻便型测氡仪,对四川阿坝地区土壤、空气中的氡气浓度开展初步调查。结果表明:(1)测区空气中氡气浓度较高,均在平均值185 Bq/m3附近;(2)所测得土壤的氡气浓度范围为2 736~93 486 Bq/m3,平均值为26 021 Bq/m3,远远高于全国城市土壤中氡气浓度7 300 Bq/m3的平均值,同时在156个土壤氡气浓度被测点中共有91个测点氡气浓度值超过20 000 Bq/m3,而按照国家标准,对于民用建筑工程土壤中氡气浓度超过20 000 Bq/m3要进行不同程度的防氡工程;(3)地质环境、土壤松散度、岩土性质、土壤含水率为影响阿坝地区土壤氡气浓度的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号