首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DPFT is a lumped approach for operational flash flood forecasting, based on the unit hydrograph. Using a multi-event alternating iterative algorithm, it identifies a robust and stable average transfer function and a consistent set of effective rainfall series associated with each event at the same time. This key ingredient allows an objective calibration of different loss functions, relating gauged precipitation and effective rainfall. A case study based on an operational French basin (545 km2) is presented. Three lumped production functions have been calibrated and compared. The results show that more elaborate models of loss functions must be proposed, and some possible directions for this are pointed out.Presently at the Institut de Ciences de la Terra Jaume Almera, Apartat 30102, 08080 Barcelona, Spain.Presently at EDF-DTG. Service de Ressources en Eau, BP 4348, 31029 Toulouse Cedex, France.  相似文献   

2.
The objective of this paper is to develop a spatial temporal runoff modelling of local rainfall patterns effect on the plant cover hilly lands in Kelantan River Basin. Rainfall interception loss based on leaf area index, loss/infiltration on the ground surface, and runoff calculation were considered as the main plant cover effects on the runoff volume. In this regard, a hydrological and geotechnical grid-based regional model (integrated model) was performed using Microsoft Excel® and GIS framework system for deterministic modelling of rainfall-induced runoff by incorporating plant cover effects. The infiltration process of the current model was integrated with the precipitation distribution method and rainfall interception approach while the runoff analysis of integrated model was employed based on loss/infiltration water on the ground surface with consideration of water interception loss by canopy and the remaining surface water. In the following, the spatial temporal analysis of rainfall-induced runoff was performed using 10 days of hourly rainfall events at the end of December 2014 in Kelantan River Basin. The corresponding changes in pressure head and consequent rate of infiltration were calculated during rainfall events. Subsequently, flood volume is computed using local rainfall patterns, along with water interception loss and the remaining surface water in the study area. The results showed the land cover changes caused significant differences in hydrological response to surface water. The increase in runoff volume of the Kelantan River Basin is as a function of deforestation and urbanization, especially converting the forest area to agricultural land (i.e. rubber and mixed agriculture).  相似文献   

3.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   

4.
Yu  Pao-Shan  Yang  Tao-Chang 《Natural Hazards》1997,15(1):51-70
In real-time flood warning systems, sufficient lead-time is important for people to take suitable actions. Rainfall forecasting is one of the ways commonly used to extend the lead-time for catchments with short response time. However, an accurate forecast of rainfall is still difficult for hydrologists using the present deterministic model. Therefore, a probability-based rainfall forecasting model, based on Markov chain, was proposed in this study. The rainfall can be forecast one to three hours in advance for a specified nonexceeding probability using the transition probability matrix of rainfall state. In this study, the nonexceeding probability, which was hourly updated on the basis of development or decay of rainfall processes, was taken as a dominant variable parameter. The accuracy of rainfall forecasting one to three hours in advance is concluded from the application of this model to four recording rain gauges. A lumped rainfall-runoff forecasting model derived from a transfer function was further applied in unison with this rainfall forecasting model to forecast flows one to four hours in advance. The results of combination of these two models show good performance with agreement between the observed and forecast hydrographs.  相似文献   

5.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   

6.
Taiwan is located in an area affected by Northwest Pacific typhoons, which are also one of the most important sources of rainfall to the island. Unfortunately, the abundant rainfall brought by typhoons frequently produces hazards. In recent years, typhoons and floods have caused serious damage, especially Typhoon Morakot in 2009. In this study, a probabilistic model is developed based on historical events which can be used to assess flood risk in Taiwan. There are 4 separate modules in this model, including a rainfall event module, a hydraulic module, a vulnerability module, and a financial loss module. Local data obtained from the Taiwan government are used to construct this model. Historical rainfall data for typhoon and flood events that have occurred since 1960, obtained from the Central Weather Bureau, are used for computing the maximum daily rainfall for each basin. In addition, the latest flood maps from the Water Resources Agency are collected to assess the probable inundation depth. A case study using the local data is carried out. Assessment is made to predict possible economic loss from different financial perspectives such as the total loss, insured loss, and loss exceeding probabilities. The assessment results can be used as a reference for making effective flood risk management strategies in Taiwan.  相似文献   

7.
In the present study, diagnostic studies were undertaken using station-based rainfall data sets of selected stations of Guyana to understand the variability of rainfall. The multidecadal variation in rainfall of coastal station Georgetown and inland station Timehri has shown that the rainfall variability was less during the May–July (20–30%) of primary wet season compared to the December--January (60–70%) of second wet season. The rainfall analysis of Georgetown based on data series from 1916 to 2007 shows that El Niño/La Niña has direct relation with monthly mean rainfall of Guyana. The impact is more predominant during the second wet season December--January. A high-resolution Weather Research and Forecasting model was made operational to generate real-time forecasts up to 84 h based on 00 UTC global forecast system (GFS), NCEP initial condition. The model real-time rainfall forecast during July 2010 evaluation has shown a reasonable skill of the forecast model in predicting the heavy rainfall events and major circulation features for day-to-day operational forecast guidance. In addition to the operational experimental forecast, as part of model validation, a few sensitivity experiments are also conducted with the combination of two cloud cumulus (Kain--Fritsch (KF) and Betts–Miller–Janjic (BMJ)) and three microphysical schemes (Ferrier et al. WSM-3 simple ice scheme and Lin et al.) for heavy rainfall event occurred during 28–30 May 2010 over coastal Guyana and tropical Hurricane ‘EARL’ formed during 25 August–04 September 2010 over east Caribbean Sea. It was observed that there are major differences in the simulations of heavy rainfall event among the cumulus schemes, in spite of using the same initial and boundary conditions and model configuration. Overall, it was observed that the combination of BMJ and WSM-3 has shown qualitatively close to the observed heavy rainfall event even though the predicted amounts are less. In the case of tropical Hurricane ‘EARL’, the forecast track in all the six experiments based on 00 UTC of 28 August 2010 initial conditions for the forecast up to 84 h has shown that the combination of KF cumulus and Ferrier microphysics scheme has shown less track errors compared to other combinations. The overall average position errors for all the six experiments taken together work out to 103 km in 24, 199 km in 48, 197 km in 72 and 174 km in 84 h.  相似文献   

8.
The Piemonte regional warning system service, managed by the Environmental Protection Agency of Piemonte (“ARPA Piemonte” as official Italian acronym), is based on an advanced meteo-hydrological automatic monitoring system, and it is integrated with forecasting activities of severe weather-related natural hazards. At present, a meteo-hydrological chain is operated to provide flood forecasting on the main river pattern. The development of a forecasting tool for shallow landslides triggered by heavy rainfall is presented. Due to the difficulties in modelling shallow landslides triggering in a large and complex area like the Piemonte region, an empirical model is developed on the basis of the correlation between rainfall and previous landslides in historical documents. The research focuses on establishing rainfall thresholds for landslides triggering, differentiating the critical rainfall values through a geological characterisation of the different territories. The period from 1990 to 2002 is considered. A total number of 160 landslides with hourly information and time of triggering are used to calibrate the system. As a first outcome, two different zones have been identified: (1) zones in alpine environments, principally characterised by a bedrock composed of metamorphic rocks, igneous rocks, dolostones or limestones that require high values of critical rainfall and (2) zones in hilly environments, principally characterised by sedimentary bedrock that require low values of critical rainfall. Verification has been performed on a total number of 429 landslides with known date of occurrence. The results show a good agreement with the model with no missed alarms and a very low number of false alarms, thus suggesting an effective operational implementation.  相似文献   

9.
Soil erosion is one of the serious and urgent issues in the Loss Plateau of China. Chinese government has implemented Grain for Green Project to restore the ecological environment since 1999. In order to explore the spatiotemporal evolution of erosion and sediment yield before and after Grain for Green Project in the Loss Plateau, annual soil loss of Yulin from 2000 to 2013 is estimated by Chinese Water Erosion on Hillslope Prediction Model in conjunction with Remote Sensing and Geographic Information Systems. This model has the characteristics of a simple algorithm and can be applied to predict erosion in the Loss Plateau. The result shows that vegetation cover increased significantly after Grain for Green Project, and the annual average value of NDVI increased from 0.20 to 0.33. The spatiotemporal variations of soil erosion are largely related to rainfall erosion distribution, slope, and land use type. The overall soil erosion categories in the south region are higher than those of the northwest. Mid slopes and valleys are the major topographic contributors to soil erosion. With the growth of slope gradient, soil erosion significantly increased. The soil loss has a decreasing tendency after Grain for Green Project. Although the rainfall of 2002 and 2013 is similar, the soil loss decreased from 5192.86 to 3598.94 t/(km2 a), decreasing by 30.33%. It is also expressed that soil loss appears a reducing trend in the same degree of slope and elevation in 2002, 2007, and 2013. Under the simulation of the maximum and the minimum rainfall, soil erosion amount in 2013 decreased by 29.16 and 30.88%. The study proved that GFG has already achieved conservation of water and soil. The results indicate that the vegetation restoration as part of the Grain for Green Project on the Loss Plateau is effective.  相似文献   

10.
In this study, multi-linear regression (MLR) approach is used to construct intermittent reservoir daily inflow forecasting system. To illustrate the applicability and effect of using lumped and distributed input data in MLR approach, Koyna river watershed in Maharashtra, India is chosen as a case study. The results are also compared with autoregressive integrated moving average (ARIMA) models. MLR attempts to model the relationship between two or more independent variables over a dependent variable by fitting a linear regression equation. The main aim of the present study is to see the consequences of development and applicability of simple models, when sufficient data length is available. Out of 47 years of daily historical rainfall and reservoir inflow data, 33 years of data is used for building the model and 14 years of data is used for validating the model. Based on the observed daily rainfall and reservoir inflow, various types of time-series, cause-effect and combined models are developed using lumped and distributed input data. Model performance was evaluated using various performance criteria and it was found that as in the present case, of well correlated input data, both lumped and distributed MLR models perform equally well. For the present case study considered, both MLR and ARIMA models performed equally sound due to availability of large dataset.  相似文献   

11.
Observed rainfall is used for runoff modeling in flood forecasting where possible, however in cases where the response time of the watershed is too short for flood warning activities, a deterministic quantitative precipitation forecast (QPF) can be used. This is based on a limited-area meteorological model and can provide a forecasting horizon in the order of six hours or less. This study applies the results of a previously developed QPF based on a 1D cloud model using hourly NOAA-AVHRR (Advanced Very High Resolution Radiometer) and GMS (Geostationary Meteorological Satellite) datasets. Rainfall intensity values in the range of 3–12 mm/hr were extracted from these datasets based on the relation between cloud top temperature (CTT), cloud reflectance (CTR) and cloud height (CTH) using defined thresholds. The QPF, prepared for the rainstorm event of 27 September to 8 October 2000 was tested for rainfall runoff on the Langat River Basin, Malaysia, using a suitable NAM rainfall-runoff model. The response of the basin both to the rainfall-runoff simulation using the QPF estimate and the recorded observed rainfall is compared here, based on their corresponding discharge hydrographs. The comparison of the QPF and recorded rainfall showed R2 = 0.9028 for the entire basin. The runoff hydrograph for the recorded rainfall in the Kajang sub-catchment showed R2 = 0.9263 between the observed and the simulated, while that of the QPF rainfall was R2 = 0.819. This similarity in runoff suggests there is a high level of accuracy shown in the improved QPF, and that significant improvement of flood forecasting can be achieved through ‘Nowcasting’, thus increasing the response time for flood early warnings.  相似文献   

12.
A simplified regression model is here calibrated on the basis of rainfall data records of Sicily (southern Italy), in order to show the model reliability in assessing the R-factor of the Universal Soil Loss Equation and its revised version (RUSLE) and to provide an estimate of long-term rainfall erosivity at medium-regional scale. The proposed model is a rearrangement of a former simplified model, formulated for the Italian environment, grouping three easily available rainfall variables on various time scales, which has been shown to be more successful than others in reproducing the rainfall erosive power over different locations of Italy. A geostatistical interpolation procedure is then applied for generating the regional long-term erosivity map with associated standard error. Areas with severe erosive rainfalls (from 2,000 up to more than 6,000 MJ mm ha−1 h−1) are pointed out which will correspond to areas suffering from severe soil erosion. Solving the problem of calculating the R-factor value in the RUSLE equation by means of such a simplified model here formulated will allow to predict the related soil loss. Moreover, given the availability of long time-series of concerned rainfall data, it will be possible to analyse the variability of rainfall erosivity within the last 50 years, and to investigate the application of RUSLE or similar soil erosion models with forecasting purposes of soil erosion risk.  相似文献   

13.
Soil moisture balance studies provide a convenient approach to estimate aquifer recharge when only limited site-specific data are available. A monthly mass-balance approach has been utilized in this study to estimate recharge in a small watershed in the coastal bend of South Texas. The developed lumped parameter model employs four adjustable parameters to calibrate model predicted stream runoff to observations at a gaging station. A new procedure was developed to correctly capture the intermittent nature of rainfall. The total monthly rainfall was assigned to a single-equivalent storm whose duration was obtained via calibration. A total of four calibrations were carried out using an evolutionary computing technique called genetic algorithms as well as the conventional gradient descent (GD) technique. Ordinary least squares and the heteroscedastic maximum likelihood error (HMLE) based objective functions were evaluated as part of this study as well. While the genetic algorithm based calibrations were relatively better in capturing the peak runoff events, the GD based calibration did slightly better in capturing the low flow events. Treating the Box-Cox exponent in the HMLE function as a calibration parameter did not yield better estimates and the study corroborates the suggestion made in the literature of fixing this exponent at 0.3. The model outputs were compared against available information and results indicate that the developed modeling approach provides a conservative estimate of recharge.  相似文献   

14.
准确计算地下水的垂向入渗补给量是合理评价和利用地下水资源的基础.EARTH模型是一种集中参数的水文模型,可刻画水流在包气带中的运移过程,弥补黑箱模型的不足.以中国科学院栾城农业生态试验站的地下水位观测资料以及气象资料为基础,综合运用降水、蒸发、土壤水、地下水动态观测资料,利用EARTH模型计算了河北平原地下水垂向入渗补给量.计算结果表明,2003年1月1日至2005年8月31日期间,栾城农业生态试验站在降水量1404.1 mm、灌溉量1050.0 mm的条件下地下水入渗补给量为487.2 mm,平均年入渗补给量为182.6 mm, 占降水和灌溉总量(2454.1 mm)的19.9%.在模拟结果的基础上,对不同年份的降水量(含灌溉)和入渗补给量分布的对比分析表明,河北栾城地下水补给滞后现象明显,在研究时间段内峰值滞后18~35 d.  相似文献   

15.
The soils of the Atacama Desert in northern Chile have long been known to contain large quantities of unusual salts, yet the processes that form these soils are not yet fully understood. We examined the morphology and geochemistry of soils on post-Miocene fans and stream terraces along a south-to-north (27° to 24° S) rainfall transect that spans the arid to hyperarid transition (21 to ∼2 mm rain y−1). Landform ages are ? 2 My based on cosmogenic radionuclide concentrations in surface boulders, and Ar isotopes in interbedded volcanic ash deposits near the driest site indicate a maximum age of 2.1 My. A chemical mass balance analysis that explicitly accounts for atmospheric additions was used to quantify net changes in mass and volume as a function of rainfall. In the arid (21 mm rain y−1) soil, total mass loss to weathering of silicate alluvium and dust (−1030 kg m−2) is offset by net addition of salts (+170 kg m−2). The most hyperarid soil has accumulated 830 kg m−2 of atmospheric salts (including 260 kg sulfate m−2 and 90 kg chloride m−2), resulting in unusually high volumetric expansion (120%) for a soil of this age. The composition of both airborne particles and atmospheric deposition in passive traps indicates that the geochemistry of the driest soil reflects accumulated atmospheric influxes coupled with limited in-soil chemical transformation and loss. Long-term rates of atmospheric solute addition were derived from the ion inventories in the driest soil, divided by the landform age, and compared to measured contemporary rates. With decreasing rainfall, the soil salt inventories increase, and the retained salts are both more soluble and present at shallower depths. All soils generally exhibit vertical variation in their chemistry, suggesting slow and stochastic downward water movement, and greater climate variability over the past 2 My than is reflected in recent (∼100 y) rainfall averages. The geochemistry of these soils shows that the transition from arid to hyperarid rainfall levels marks a fundamental geochemical threshold: in wetter soils, the rate and character of chemical weathering results in net mass loss and associated volumetric collapse after 105 to 106 years, while continuous accumulation of atmospheric solutes in hyperarid soils over similar timescales results in dramatic volumetric expansion. The specific geochemistry of hyperarid soils is a function of atmospheric sources, and is expected to vary accordingly at other hyperarid sites. This work identifies key processes in hyperarid soil formation that are likely to be independent of location, and suggests that analogous processes may occur on Mars.  相似文献   

16.
Carbonate rocks distribute widely in China. The total area of the carbonate rocks is about 3,430,000 km2, and the exposed area of the carbonate is approximately 13 % of China’s territory. In 2003, soil loss in Yunnan, Guizhou, and Guangxi provinces reached 179,600 km2, which is almost 40.1 % of the total area, causing rocky desertification. In this study, the erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou province is proposed. The mechanism occurs under the following geological environment: slope surface undulation, underlying bedrock surface fluctuation and thin and inhomogeneous soil overlying, overlying soil generation by bedrock weathering, underground karst development, and large groundwater depth and lying water table under the bottom of soils. The erosion-creep-collapse mechanism of underground soil loss in the karst slopes is explained as follows: power loss due to human cultivation activities that destroy the soil structure, hydraulic force formed by rainfall infiltration, wet–dry cycle generated by rainfall, erosion effect caused by rainfall penetration, creeping and flowing of plastic-stream soil, and collapse. The erosion-creep-collapse mechanism of underground soil loss has seven steps: disturbance of soils filled in underground karst cave by human activities, internal soil erosion and partial collapse caused by hydraulic power, internal free surface formation within the soil in the filled karst cave, internal soil creeping, soil pipe formation, soil pipe collapse, and ground surface collapse and filling. Soil loss develops slowly, and sudden transportation occurs by collapse. Soil loss can be explained by the proposed mechanism, and soil loss can be prevented by controlling soil collapse.  相似文献   

17.
黄土地区公路边坡降雨灾害预测预警方法研究   总被引:1,自引:1,他引:0  
在野外现场调查和理论分析的基础上,考虑降雨量的损失和降雨作用的滞后性,提出了有效降雨量的计算方法;通过有效降雨量的统计分析,确定了砂黄土地区以及典型黄土地区公路边坡可能发生失稳破坏的有效降雨量分级值即雨量线值,并用雨量线方法进行公路边坡失稳预测。通过工程实例验证,表明雨量线法具有较好的实用性。  相似文献   

18.
Flash flood forecasting of catchment systems is one of the challenges especially in the arid ungauged basins. This study is attempted to estimate the relationship between rainfall and runoff and also to provide flash flood hazard warnings for ungauged basins based on the hydrological characteristics using geographic information system (GIS). Morphometric characteristics of drainage basins provide a means for describing the hydrological behavior of a basin. The study examined the morphometric parameters of Wadi Rabigh with emphasis on its implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30-m resolution, topographic map (1:50,000), and geological maps (1,250,000) which were subject to field confirmation. About 36 morphometric parameters were measured and calculated, and interlinked to produce nine effective parameters for the evaluation of the flash flood hazard degree of the study area. Based on nine effective morphometric parameters that directly influence on the hydrologic behavior of the Wadi through time of concentration, the flash flood hazard of the Rabigh basin and its subbasins was identified and classified into three groups (High, medium, and low hazard degree). The present work proved that the physiographic features of drainage basin contribute to the possibility of a flash flood hazard evaluation for any particular drainage area. The study provides details on the flash flood prone subbasins and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones. Based on two historical data events of rainfall and the corresponding maximum flow rate, morphometric parameters and Stormwater Management and Design Aid software (SMADA 6), it could be to generate the hydrograph of Wadi Rabigh basin. As a result of the model applied to Wadi Rabigh basin, a rainfall event of a total of 22 mm with a duration of 5 h at the station nearby the study area, which has an exceedance probability of 50 % and return period around 2 years, produces a discharge volume of 15.2?×?106 m3 at the delta, outlet of the basin, as 12.5 mm of the rainfall infiltrates (recharge).  相似文献   

19.
Flood loss analysis and quantitative risk assessment in China   总被引:9,自引:4,他引:5  
Risk assessment is a prerequisite for flood risk management. Practically, most of the decision making requires that the risks and costs of all risk mitigation options are evaluated in quantified terms. Therefore, a quantitative assessment of possible flood loss is very important, especially for emergency planning and pre-disaster preparedness. This paper presents a preliminary methodology and an operational approach for assessing the risk of flood loss to the population, crops, housing, and the economy at county level in China. The present work assesses the risk of loss for each element (people, crops, and so on) under low-, moderate-, and high-intensity flood using intensity-loss curves and loss rates based on historical flood data from 1990 to 2008. Results show that the counties with high flood risk are primarily located in North, East, Central, and South China, particularly in the lower reaches of rivers. On the other hand, the risk of most counties in the western region is generally lower than that of counties in the eastern region. However, for the entire country, the high-risk regions have both a substantial amount of rainfall and low terrain, making such regions highly prone to flooding. Moreover, these high-risk regions present both high population and wealth density.  相似文献   

20.
The January 2010 earthquake that devastated Haiti left its population ever more vulnerable to rainfall-induced flash floods. A flash flood guidance system has been implemented to provide real-time information on the potential of small (~70 km2) basins for flash flooding throughout Haiti. This system has components for satellite rainfall ingest and adjustment on the basis of rain gauge information, dynamic soil water deficit estimation, ingest of operational mesoscale model quantitative precipitation forecasts, and estimation of the times of channel flow at bankfull. The result of the system integration is the estimation of the flash flood guidance (FFG) for a given basin and for a given duration. FFG is the amount of rain of a given duration over a small basin that causes minor flooding in the outlet of the basin. Amounts predicted or nowcasted that are higher than the FFG indicate basins with potential for flash flooding. In preparation for Hurricane Tomas’ landfall in early November 2010, the FFG system was used to generate 36-h forecasts of flash flood occurrence based on rainfall forecasts of the nested high-resolution North American Model of the National Centers for Environmental Prediction. Assessment of the forecast flood maps and forecast precipitation indicates the utility and value of the forecasts in understanding the spatial distribution of the expected flooding for mitigation and disaster management. It also highlights the need for explicit uncertainty characterization of forecast risk products due to large uncertainties in quantitative precipitation forecasts on hydrologic basin scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号