首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, −1.5<[Fe/H]<0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation (Ramirez et al. in Astron. Astrophys. 465:271, 2007); and (ii) N=64 SN thick disk, SN thin disk, and bulge K-giant stars within the range, −1.7<[Fe/H]<0.5, for which the oxygen abundance has been determined (Melendez et al. in Astron. Astrophys. 484:L21, 2008). A comparison is made with previous results implying use of [O/H]–[Fe/H] empirical relations (Caimmi in Astron. Nachr. 322:241, 2001b; New Astron. 12:289, 2007) related to (iii) 372 SN halo subdwarfs (Ryan and Norris in Astron. J. 101:1865, 1991); and (iv) 268 K-giant bulge stars (Sadler et al. in Astron. J. 112:171, 1996). The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1–0.9. In the second part, inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts with the exception of the thin or thick + thin disk, where two additional restrictions are needed: (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from, or enhanced in, forming stars at different rates with respect to a selected reference case. Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor enhanced in, forming stars with respect to a selected reference case) can also reproduce the data to an acceptable extent. Our main conclusions are (1) different models are necessary to fit the (incomplete) halo sample, which is consistent with the idea of two distinct halo components: an inner, flattened halo in slow prograde rotation, and an outer, spherical halo in net retrograde rotation (Carollo et al. in Nature 450:1020, 2007); (2) the oxygen enrichment within the inner SN halo, the SN thick disk, and the bulge, was similar and coeval within the same metallicity range, as inferred from observations (Prochaska et al. in Astron. J. 120:2513, 2000); (3) the fit to thin disk data implies an oxygen abundance range similar to its thick disk counterpart, with the extension of conclusion (2) to the thin disk, and the evolution of the thick + thin disk as a whole (Haywood in Mon. Not. R. Astron. Soc. 388:1175, 2008) cannot be excluded; (4) leaving outside the outer halo, a fit to the data related to different environments is provided by models with a strictly universal IMF but different probabilities of a region being active, which implies different global efficiencies of the star formation rate; (5) a special case of stellar migration across the disk can be described by models with enhanced star formation, where a fraction of currently observed SN stars were born in situ and a comparable fraction is due to the net effect of stellar migration, according to recent results based on high-resolution N-body + smooth particle hydrodynamics simulations (Roškar et al. in Astrophys. J. Lett. 684:L79, 2008).  相似文献   

2.
Recent data on the empirical metallicity distribution of G dwarfs in the disk solar neighbourhood are fitted in two different ways. We use an extended Poisson distribution in the limit where the probability of star formation is small, and a Gauss distribution in the limit where a large number of physical variables is required to determine stellar metal abundance. Both are found to reproduce the data at the same (acceptable) extent, with a slight preference for the former. The emprirical, differential metallicity distribution of G dwarfs in the disk solar neighbourhood is compared with its theoretical counterpart, in the picture of a closed, comoving model of chemical evolution. The limits of the currently used infall models are discussed and a scenario of galactic formation and evolution is presented. The Galactic history is thought as made of two main phases: contraction (which produces the extended component) and equilibrium (which gives the disk). In this view, the stars observed within the solar cylinder did not necessarily arise from the primordial gas which later collapsed into the disk solar neighbourhood. It is found that the G-dwarf problem is strongly alleviated, with the possible exception of the low-metallicity and high-metallicity tail of the distribution. The best choice of parameters implies: (i) a metal yield in the contraction phase which is larger by a factor of about 5 with respect to the equilibrium phase; (ii) a model halo mass fraction of about 0.3; (iii) a model disk mass fraction of about 0.6. It provides additional support to the idea of a generalized Schmidt star formation law, which is different in different phases of evolution. The model, cumulative, G-dwarf metallicity distribution in the disk solar neighbourhood is found to predict too may low-metallicity stars with respect to its empirical counterpart, related to a Poissonian or Gaussian fit. The main resons for the occurrence of a G-dwarf problem are discussed. Finally, a stochastic process of star formation, related to a Poisson distribution, is briefly outlined.  相似文献   

3.
《New Astronomy》2007,12(4):289-321
This paper has two parts: one about observational constraints, and the other about chemical evolution models. In the first part, the empirical differential metallicity distribution (EDMD) is deduced from two different samples involving (i) 268 K-giant bulge stars [Sadler, E.M., Rich, R.M., Terndrup, D.M., 1996. AJ 112, 171], and (ii) 149 globular clusters [Mackey, A.D., van den Bergh, S., 2005. MNRAS 360, 631], in addition to previous results (Caimmi, R., 2001b, AN 322, 241 (C01)) related to (iii) 372 solar neighbourhood halo subdwarfs [Ryan, S.G., Norris, J.E., 1991. AJ 101, 1865]. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the Galactic spheroid is determined by weighting the mass. The empirical age-metallicity relation (EAMR) involving absolute ages is deduced from recent results related to a homogeneous sample of globular clusters [De Angeli, F., Piotto, G., Cassisi, S., et al., 2005. AJ 130, 116]. In the second part, models of chemical evolution for the Galactic halo and bulge are computed, assuming the instantaneous recycling approximation. The EDMD data are fitted, to an acceptable extent, by simple models of chemical evolution implying both homogeneous and inhomogeneous star formation, provided that star formation is inhibited during halo formation and enhanced during bulge formation, with respect to the disk solar neighbourhood, taken to be representative of the whole disk. The initial mass function (IMF) is assumed to be a universal power law, which implies the same value of the true yield in different subsystems. The theoretical differential metallicity distribution (TDMD) is first determined for the halo and the bulge separately, and then for the Galactic spheroid by weighting the mass. The EAMR cannot be fitted into the Simple model that implies homogeneous star formation, but shows a non-monotonic trend characterized by large dispersion. On the other hand, simple models involving inhomogeneous star formation yield a theoretical age-metallicity relation (TAMR) which reproduces the data to an acceptable extent. For gas ouflow from the proto-halo, acceptable models give rise to different predictions in different alternatives. If the Galactic spheroid and disk underwent decoupled chemical evolution, i.e. no gas exchange between the related reservoirs, less than one third of the bulge mass outflowed from the proto-halo. If the Galactic spheroid and disk underwent coupled chemical evolution, i.e. some gas exchange between the related reservoirs, the existence of an unseen baryonic halo (or equivalent amount of gas lost by the Galaxy) with mass comparable to bulge mass, is necessarily needed. In this view, the outflowing proto-halo gas which remains bound to the Galaxy, produces both the bulge and the disk.  相似文献   

4.
The current paper investigates how the empirical, G-dwarf metallicity distribution constrains simple, comoving models of chemical evolution. In doing this, the application of the models to a data sample, performed in a previous paper, is refined and extended. The key idea is that (i) different star formation rates with different mass spectra take place in different phases of evolution, i.e. contraction and equilibrium, and (ii) disk formation begins at a time t = Td and ends at t = Tc, which marks the transition from contraction to equilibrium. In this view, the lowest-metallicity point of the empirical, differential distribution, consistent with a linear fit, is related to the beginning of disk formation, and an apparent discontinuity point to the transition from contraction to equilibrium. In addition, different linear fits hold on the left (early distribution) and on the right (late distribution) of the discontinuity point. Models consistent with the empirical, G-dwarf metallicity distribution are related to linear fits on the early and late side. Homologous solutions during the equilibrium phase are analysed in detail with respect to changes in Tc and Ta, the age of the Galaxy. Then we are left with a single free parameter which is relevant to the chemical evolution, i.e. the mass spectrum exponent during the equilibrium phase. The allowed values for the other parameters, thought as a function of the above mentioned one, are plotted for each case. A Salpeter mass spectrum exponent, p = −2.35, is ruled out by the theoretical, lower stellar mass limit, contrary to a Scalo mass spectrum exponent, p = −2.90, in contrast with previous literature. The reasons for this discrepancy are discussed. Our results are marginally consistent with a same initial mass function during the contraction and equilibrium phase, but in this case the disk mass fraction is of the is same order, or less, than the halo mass fraction. It is also investigated how the empirical age-metallicity relation constrains the duration of the contraction phase, for a reasonable upper limit of Ta. Keeping in mind that the empirical, G-dwarf metallicity distribution has not been corrected for the large cosmic scatter shown by the empirical, age-metallicity relation, we find a duration of disk formation, TcTd = 1.07–1.5 Gyr, by a factor 3–5 less than it is found by use of simple infall models. The reasons of this difference are explained. The idea of a massive, white dwarf halo, which seems to be indicated by microlensing experiments, is ruled out by the empirical, G-dwarf metallicity distribution, in the light of the current model and provided the solar neighbourhood is a typical region of the Galaxy. More refined models involving e.g., the relax of instantaneous recycling would change our results, but the trend is expected to be only slightly altered.  相似文献   

5.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

6.
The initial mass function (IMF) in the solar neighbourhood is determined on the basis of a recently derived history of the star formation rate (SFR) which shows the presence of a star formation burst about 8 Gyr ago. The observed present-day mass function (PDMF) is considered, and the average past distribution of stars of a given mass is estimated. Two cases are considered, namely (i) constant SFR, and (ii) variable SFR as derived from the new metallicity distribution of G dwarfs. The resulting IMF is compared with previous determinations by Scalo and Kroupa et al., and the variation with stellar mass of the slope of the IMF is compared with reference determinations in the literature.  相似文献   

7.
An alternative non-infall model for the chemical evolution in the solar neighbourhood is proposed. The evolution of the disk is divided into two phases. In phaseA, the magnetic field and the gas viscosity produced an outward flux of gas, forming and maintaining the ring observed today. This flux balanced the star formation in the ring. The number of stars increased until the beginning of phaseB, during which stellar viscosity generated an inward flux of stars towards the inner disk, while the magnetic fields continued supplying gas to the ring. The combination of these two effects brought the ring to a quasi-steady state, with a constant mass of gas and stars which we assume has continued till the present. A coherent picture is obtained in which the observational restrictions are explained without introducing any arbitrary hypothesis. The inward flux of stars in phaseB has transported the metal-poor G-dwards to the inner region, thus explaining their absence in the solar neighbourhood.  相似文献   

8.
The chemical evolution of the 3-component system of halo-bulge-disc is calculated. If the bulge accretes primordial halo matter quickly and forms stars rapidly before the gas is ejected by a galactic wind after 109 yr, the metallicity distribution of the bulge K-giants (Rich, 1988) is reproduced. The metal-enriched matter in a wind from the bulge is mixed with the halo gas which is accreted into the disc. The metallicity distribution of the G-dwarfs and Twarog's age-metallicity relatin in the solar neighbourhood can be well reproduced by assuming reasonable bulge-to-disc mass ratio.  相似文献   

9.
A sample of subdwarfs with accurate space velocities and standarized metallicities is presented. This was constructed by combining Hipparcos parallaxes and proper motions with radial velocities and metallicities from Carney et al. (1994; CLLA). The accurate Hipparcos parallaxes lead to an – upward – correction factor of 11% of the photometric distance scale of CLLA. The kinematical behaviour of the subdwarfs is discussed in particular in relation to their metallicities. Most of the stars turn out to be thick disk stars, but the sample contains also many genuine halo stars. While the extreme metal poor halo does not rotate, a population of subdwarfs with metallicities in the range −1.6≤ [Fe/H] ≤ −1.0 dex appears to rotate around the galactic center with a mean rotation speed of about 100 km s-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Li abundance is determined for 23 halo subdwarfs. About half of the stars show [Fe/H] < −1.4 and a space velocityV > 160 km s−1 Li appears to be present in all our halo stars, with an abundance within about ± 0.2 dex of the value logn (Li) = 2.0 found by Spite & Spite (1982). Thus our results provide confirmation of the main conclusion of Spite & Spite.  相似文献   

11.
A comparison of observed stellar distributions with a three-component model of the Galaxy is presented. The analysis is based on photometric and photoelectric data obtained along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The assumed model considers the Galaxy as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. To model the observed colour distribution, we distinguish main sequence stars and disk red giants as the disk subsystem; white dwarfs, subdwarfs and intermediate giants as the thick disk subsystem; extreme subdwarfs, spheroid giants and horizontal branch stars as the spheroid subsystem. A statistical relation between the apparent and absolute magnitudes of stars which make the maximum contribution to the star counts for a given disk subsystem is derived. In order to achieve the best agreement between the model and observations, we fit the values of the ‘dip’ (aw) of the disk luminosity function, the correction to the absolute magnitude of disk red giants (ΔMVRG) and the expression for interstellar extinction. As the main result, we obtained aw = 0.6 (logarithmic scale) and ΔMVRG = 0.5 mag; the interstellar extinction has to be taken into account by the modified Sandage law.  相似文献   

12.
There is a long term dynamical heating of stellar populations with age observed in the age – velocity dispersion – relation (AVR). This effect allows a determination of the star formation history SFR(t) from local kinematical data of main sequence stars. Using a self-consistent disk model for the vertical structure of the disk, we find from the kinematics of the stars in the solar neighbourhood that the SFR shows a moderate star burst about 10 Gyr ago followed by a continuous decline to the present day value consistent with the observed number of OB stars. The gravitational potential of the gas component and of the Dark Matter Halo is included and the effect of chemical enrichment, finite lifetime of the stars and mass loss of the stellar component are taken into account. The scale heights for main sequence stars together with the SFR is then used to determine constistently the IMF from the observed local luminosity function. The main new result is that the power law break in the present day mass function (PDMF) around 1 M is entirely due to evolutionary effects of the disk and does not appear in the IMF. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A three-component chemical evolution model of the Galaxy is presented, which we believe will cast a new light on the G-dwarf problem. The model is based on a scenario of the Galaxy consisting of three major evolutionary phases: halo, thick disk and thin disk, separated by two short interludes of rapid collapse. The evolution of different stellar populations are treated separately, the combination of which yields an overall metallicity distribution function for the solar neighbourhood. We tested three different models using the same set of basic equations: the “prompt initial enrichment” (PIE) model, the “proportional yield” (PPY) model and the “collapse” (CLP) model. Best-fit parameters are derived. The results show that the different populations have remarkably different IMFs, while mass exchange has only minimally affected the chemical evolution in the solar vicinity, so that the solar vicinity can be regarded as a closed system, at least in the late stage of the Galactic evolution.  相似文献   

14.
15.
《New Astronomy Reviews》2000,44(4-6):303-313
We review the yields of intermediate mass elements (from C to Zn) from massive stars and their associated uncertainties, in the light of recent theoretical results. We consider the role of those yields for our understanding of the chemical evolution of the solar neighbourhood and of the halo of our Galaxy. Current yields reproduce in a satisfactory way the solar system composition, but several problems remain concerning abundance ratios in halo stars.  相似文献   

16.
Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal‐poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1000 the solar metallicity and 4 stars with about 1/10000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X‐shooter has the unique capability of performing the necessary follow‐up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr,...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco‐Italian X‐shooter GTO. The two stars were targeted to be of metallicity around –3.0, the analysis of the X‐shooter spectra showed them to be of metallicity around –2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X‐shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The recent VIIth Catalogue of Galactic Wolf-Rayet Stars lists 227 Population I WR stars, comprising 127 WN, 87 WC, 10 WN/WC and 3 WO stars. Additional discoveries bring the census to 234 WR stars. A re-determination of the optical photometric distances and the galactic distribution of WR stars shows in the solar neighbourhood a projected surface density of 2.7 WR stars per kpc2, a N WC/N WN number ratio of 1.3, and a WR binary frequency of 40 %.The galactocentric distance (R WR) distribution per subtype showsR WN and R WC decreasing with WN and WC subtypes. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
We analyse two recent computations of Type II supernova nucleosynthesis by Woosley & Weaver (hereafter WW95) and Thielemann, Nomoto & Hashimoto (hereafter TNH96), focusing on the ability to reproduce the observed [Mg/Fe] ratios in various galaxy types. We show that the yields of oxygen and total metallicity are in good agreement. However, TNH96 models produce more magnesium in the intermediate and less iron in the upper mass range of Type II supernovae than WW95 models. To investigate the significance of these discrepancies for chemical evolution, we calculate simple stellar population yields for both sets of models and different initial mass function slopes. We conclude that the Mg yields of WW95 do not suffice to explain the [Mg/Fe] overabundance either in giant elliptical galaxies and bulges or in metal-poor stars in the solar neighbourhood and the Galactic halo. Calculating the chemical evolution in the solar neighbourhood according to the standard infall model, we find that, using WW95 and TNH96 nucleosynthesis, the solar magnesium abundance is underestimated by 29 and 7 per cent, respectively.   We include the relaxation of the instantaneous mixing approximation in chemical evolution models by splitting the gas component into two different phases. In additional simulations of the chemical evolution in the solar neighbourhood, we discuss various time-scales for the mixing of the stellar ejecta with the interstellar medium. We find that a delay of the order of 108 yr leads to a better fit of the observational data in the [Mg/Fe]–[Fe/H] diagram without destroying the agreement with solar element abundances and the age–metallicity relation.  相似文献   

19.
I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new three-dimensional chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z= 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. Correspondingly, the inner halo is the oldest component, followed by the outer halo, the bar/bulge, the thick and the thin disk. The bulge in the model consists of at least two stellar subpopulations, an early collapse population and a population that formed later in the bar. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The fast neutron capture process (the r-process) occurs in the neutron-rich circumstance. However its concrete physical environment is not very clear. With recent progress in observations, many extremely metal-poor halo stars have been discovered. They have two characteristics: one is the overabundance of fast neutron elements with the relative abundance consistent with that of the sun; the other is that fast neutron element contents in stars at the same metal abundance have a very large dispersion. This provides a particular way to study the origin of the r-process. Simulation was used to study the galaxy's evolution process and the resulting dispersion of fast neutron nuclide contents in stars. The model of galaxy evolution obtained in this way not only contains spontaneous star formation in the gas region, but also includes the star formation excited by the supernova explosion. It is shown from our results that the supernovae at the low mass end should be the place producing the fast neutron nuclides. In addition, it is also shown that the non-uniformity of the galaxy evolution caused by the supernova explosion is not enough to explain the observed dispersion of fast neutron element contents in halo stars. This problem should be further studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号